Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55746 SU2adj1nf3 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_3^2$ 0.8814 1.0816 0.8149 [X:[], M:[0.7903, 0.8592], q:[0.6049, 0.6049, 0.7148], qb:[0.6049, 0.6049, 0.5842], phi:[0.5704]] [X:[], M:[[0, -7, -7, 0], [0, 8, 8, 4]], q:[[-1, 7, 7, 0], [1, 0, 0, 0], [0, 2, 2, 1]], qb:[[0, 7, 0, 0], [0, 0, 7, 0], [0, 0, 0, 7]], phi:[[0, -4, -4, -2]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \tilde{q}_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_3$, $ q_3\tilde{q}_1$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$ . -12 t^2.37 + t^2.58 + 4*t^3.57 + 5*t^3.63 + t^3.9 + 4*t^3.96 + t^4.74 + t^4.95 + t^5.16 + t^5.22 + 4*t^5.28 + 10*t^5.34 - 12*t^6. - 4*t^6.06 + 4*t^6.14 + 5*t^6.21 + t^6.27 - t^6.39 + t^6.47 + 4*t^6.54 + t^7.11 + 10*t^7.13 + 16*t^7.2 + 14*t^7.26 - 4*t^7.38 + 4*t^7.46 + 16*t^7.53 + 17*t^7.59 - 6*t^7.71 + t^7.73 - 4*t^7.77 + t^7.79 + 4*t^7.86 + 10*t^7.92 - t^8.19 - 4*t^8.25 - 2*t^8.37 + t^8.5 - 13*t^8.58 - 3*t^8.64 + 4*t^8.72 - t^8.76 + 9*t^8.78 + 16*t^8.85 + 36*t^8.91 + 34*t^8.97 - t^4.71/y - t^7.08/y + t^7.95/y + t^8.34/y + (4*t^8.94)/y - t^4.71*y - t^7.08*y + t^7.95*y + t^8.34*y + 4*t^8.94*y t^2.37/(g2^7*g3^7) + g2^8*g3^8*g4^4*t^2.58 + g1*g4^7*t^3.57 + g2^7*g4^7*t^3.57 + g3^7*g4^7*t^3.57 + (g2^7*g3^7*g4^7*t^3.57)/g1 + g1*g2^7*t^3.63 + g1*g3^7*t^3.63 + g2^7*g3^7*t^3.63 + (g2^14*g3^7*t^3.63)/g1 + (g2^7*g3^14*t^3.63)/g1 + g2^2*g3^2*g4^8*t^3.9 + g1*g2^2*g3^2*g4*t^3.96 + g2^9*g3^2*g4*t^3.96 + g2^2*g3^9*g4*t^3.96 + (g2^9*g3^9*g4*t^3.96)/g1 + t^4.74/(g2^14*g3^14) + g2*g3*g4^4*t^4.95 + g2^16*g3^16*g4^8*t^5.16 + (g4^12*t^5.22)/(g2^4*g3^4) + (g1*g4^5*t^5.28)/(g2^4*g3^4) + (g2^3*g4^5*t^5.28)/g3^4 + (g3^3*g4^5*t^5.28)/g2^4 + (g2^3*g3^3*g4^5*t^5.28)/g1 + (g1^2*t^5.34)/(g2^4*g3^4*g4^2) + (g1*g2^3*t^5.34)/(g3^4*g4^2) + (g2^10*t^5.34)/(g3^4*g4^2) + (g1*g3^3*t^5.34)/(g2^4*g4^2) + (2*g2^3*g3^3*t^5.34)/g4^2 + (g2^10*g3^3*t^5.34)/(g1*g4^2) + (g3^10*t^5.34)/(g2^4*g4^2) + (g2^3*g3^10*t^5.34)/(g1*g4^2) + (g2^10*g3^10*t^5.34)/(g1^2*g4^2) - 4*t^6. - (g1*t^6.)/g2^7 - (g2^7*t^6.)/g1 - (g1*t^6.)/g3^7 - (g1^2*t^6.)/(g2^7*g3^7) - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g1 - (g3^7*t^6.)/g2^7 - (g2^7*g3^7*t^6.)/g1^2 - (g1*t^6.06)/g4^7 - (g2^7*t^6.06)/g4^7 - (g3^7*t^6.06)/g4^7 - (g2^7*g3^7*t^6.06)/(g1*g4^7) + g1*g2^8*g3^8*g4^11*t^6.14 + g2^15*g3^8*g4^11*t^6.14 + g2^8*g3^15*g4^11*t^6.14 + (g2^15*g3^15*g4^11*t^6.14)/g1 + g1*g2^15*g3^8*g4^4*t^6.21 + g1*g2^8*g3^15*g4^4*t^6.21 + g2^15*g3^15*g4^4*t^6.21 + (g2^22*g3^15*g4^4*t^6.21)/g1 + (g2^15*g3^22*g4^4*t^6.21)/g1 + (g4^8*t^6.27)/(g2^5*g3^5) - (g2^2*g3^2*t^6.39)/g4^6 + g2^10*g3^10*g4^12*t^6.47 + g1*g2^10*g3^10*g4^5*t^6.54 + g2^17*g3^10*g4^5*t^6.54 + g2^10*g3^17*g4^5*t^6.54 + (g2^17*g3^17*g4^5*t^6.54)/g1 + t^7.11/(g2^21*g3^21) + g1^2*g4^14*t^7.13 + g1*g2^7*g4^14*t^7.13 + g2^14*g4^14*t^7.13 + g1*g3^7*g4^14*t^7.13 + 2*g2^7*g3^7*g4^14*t^7.13 + (g2^14*g3^7*g4^14*t^7.13)/g1 + g3^14*g4^14*t^7.13 + (g2^7*g3^14*g4^14*t^7.13)/g1 + (g2^14*g3^14*g4^14*t^7.13)/g1^2 + g1^2*g2^7*g4^7*t^7.2 + g1*g2^14*g4^7*t^7.2 + g1^2*g3^7*g4^7*t^7.2 + 2*g1*g2^7*g3^7*g4^7*t^7.2 + 2*g2^14*g3^7*g4^7*t^7.2 + (g2^21*g3^7*g4^7*t^7.2)/g1 + g1*g3^14*g4^7*t^7.2 + 2*g2^7*g3^14*g4^7*t^7.2 + (2*g2^14*g3^14*g4^7*t^7.2)/g1 + (g2^21*g3^14*g4^7*t^7.2)/g1^2 + (g2^7*g3^21*g4^7*t^7.2)/g1 + (g2^14*g3^21*g4^7*t^7.2)/g1^2 + g1^2*g2^14*t^7.26 + g1^2*g2^7*g3^7*t^7.26 + g1*g2^14*g3^7*t^7.26 + g2^21*g3^7*t^7.26 + g1^2*g3^14*t^7.26 + g1*g2^7*g3^14*t^7.26 + 2*g2^14*g3^14*t^7.26 + (g2^21*g3^14*t^7.26)/g1 + (g2^28*g3^14*t^7.26)/g1^2 + g2^7*g3^21*t^7.26 + (g2^14*g3^21*t^7.26)/g1 + (g2^21*g3^21*t^7.26)/g1^2 + (g2^14*g3^28*t^7.26)/g1^2 - (g1*t^7.38)/(g2^6*g3^6*g4^3) - (g2*t^7.38)/(g3^6*g4^3) - (g3*t^7.38)/(g2^6*g4^3) - (g2*g3*t^7.38)/(g1*g4^3) + g1*g2^2*g3^2*g4^15*t^7.46 + g2^9*g3^2*g4^15*t^7.46 + g2^2*g3^9*g4^15*t^7.46 + (g2^9*g3^9*g4^15*t^7.46)/g1 + g1^2*g2^2*g3^2*g4^8*t^7.53 + 2*g1*g2^9*g3^2*g4^8*t^7.53 + g2^16*g3^2*g4^8*t^7.53 + 2*g1*g2^2*g3^9*g4^8*t^7.53 + 4*g2^9*g3^9*g4^8*t^7.53 + (2*g2^16*g3^9*g4^8*t^7.53)/g1 + g2^2*g3^16*g4^8*t^7.53 + (2*g2^9*g3^16*g4^8*t^7.53)/g1 + (g2^16*g3^16*g4^8*t^7.53)/g1^2 + g1^2*g2^9*g3^2*g4*t^7.59 + g1*g2^16*g3^2*g4*t^7.59 + g1^2*g2^2*g3^9*g4*t^7.59 + 2*g1*g2^9*g3^9*g4*t^7.59 + 2*g2^16*g3^9*g4*t^7.59 + (g2^23*g3^9*g4*t^7.59)/g1 + g1*g2^2*g3^16*g4*t^7.59 + 2*g2^9*g3^16*g4*t^7.59 + (2*g2^16*g3^16*g4*t^7.59)/g1 + (g2^23*g3^16*g4*t^7.59)/g1^2 + (g2^9*g3^23*g4*t^7.59)/g1 + (g2^16*g3^23*g4*t^7.59)/g1^2 + (g4^12*t^7.59)/(g2^11*g3^11) - (g1*t^7.71)/(g2^4*g3^11*g4^2) - (g1*t^7.71)/(g2^11*g3^4*g4^2) - (2*t^7.71)/(g2^4*g3^4*g4^2) - (g2^3*t^7.71)/(g1*g3^4*g4^2) - (g3^3*t^7.71)/(g1*g2^4*g4^2) + g2^24*g3^24*g4^12*t^7.73 - (g1*t^7.77)/(g2^4*g3^4*g4^9) - (g2^3*t^7.77)/(g3^4*g4^9) - (g3^3*t^7.77)/(g2^4*g4^9) - (g2^3*g3^3*t^7.77)/(g1*g4^9) + g2^4*g3^4*g4^16*t^7.79 + g1*g2^4*g3^4*g4^9*t^7.86 + g2^11*g3^4*g4^9*t^7.86 + g2^4*g3^11*g4^9*t^7.86 + (g2^11*g3^11*g4^9*t^7.86)/g1 + g1^2*g2^4*g3^4*g4^2*t^7.92 + g1*g2^11*g3^4*g4^2*t^7.92 + g2^18*g3^4*g4^2*t^7.92 + g1*g2^4*g3^11*g4^2*t^7.92 + 2*g2^11*g3^11*g4^2*t^7.92 + (g2^18*g3^11*g4^2*t^7.92)/g1 + g2^4*g3^18*g4^2*t^7.92 + (g2^11*g3^18*g4^2*t^7.92)/g1 + (g2^18*g3^18*g4^2*t^7.92)/g1^2 - g2^6*g3^6*g4^10*t^8.19 - g1*g2^6*g3^6*g4^3*t^8.25 - g2^13*g3^6*g4^3*t^8.25 - g2^6*g3^13*g4^3*t^8.25 - (g2^13*g3^13*g4^3*t^8.25)/g1 - (2*t^8.37)/(g2^7*g3^7) + t^8.5/g4^14 - g1^2*g2*g3*g4^4*t^8.58 - g1*g2^8*g3*g4^4*t^8.58 - g2^15*g3*g4^4*t^8.58 - g1*g2*g3^8*g4^4*t^8.58 - 5*g2^8*g3^8*g4^4*t^8.58 - (g2^15*g3^8*g4^4*t^8.58)/g1 - g2*g3^15*g4^4*t^8.58 - (g2^8*g3^15*g4^4*t^8.58)/g1 - (g2^15*g3^15*g4^4*t^8.58)/g1^2 - (g1*g2^8*g3^8*t^8.64)/g4^3 - (g2^15*g3^8*t^8.64)/g4^3 - (g2^8*g3^15*t^8.64)/g4^3 - (g2^15*g3^15*t^8.64)/(g1*g4^3) + (g4^8*t^8.64)/(g2^12*g3^12) + g1*g2^16*g3^16*g4^15*t^8.72 + g2^23*g3^16*g4^15*t^8.72 + g2^16*g3^23*g4^15*t^8.72 + (g2^23*g3^23*g4^15*t^8.72)/g1 - t^8.76/(g2^5*g3^5*g4^6) + g1*g2^23*g3^16*g4^8*t^8.78 + g1*g2^16*g3^23*g4^8*t^8.78 + g2^23*g3^23*g4^8*t^8.78 + (g2^30*g3^23*g4^8*t^8.78)/g1 + (g2^23*g3^30*g4^8*t^8.78)/g1 + (g1*g4^19*t^8.78)/(g2^4*g3^4) + (g2^3*g4^19*t^8.78)/g3^4 + (g3^3*g4^19*t^8.78)/g2^4 + (g2^3*g3^3*g4^19*t^8.78)/g1 + (g1^2*g4^12*t^8.85)/(g2^4*g3^4) + (2*g1*g2^3*g4^12*t^8.85)/g3^4 + (g2^10*g4^12*t^8.85)/g3^4 + (2*g1*g3^3*g4^12*t^8.85)/g2^4 + 4*g2^3*g3^3*g4^12*t^8.85 + (2*g2^10*g3^3*g4^12*t^8.85)/g1 + (g3^10*g4^12*t^8.85)/g2^4 + (2*g2^3*g3^10*g4^12*t^8.85)/g1 + (g2^10*g3^10*g4^12*t^8.85)/g1^2 + (g1^3*g4^5*t^8.91)/(g2^4*g3^4) + (2*g1^2*g2^3*g4^5*t^8.91)/g3^4 + (2*g1*g2^10*g4^5*t^8.91)/g3^4 + (g2^17*g4^5*t^8.91)/g3^4 + (2*g1^2*g3^3*g4^5*t^8.91)/g2^4 + 4*g1*g2^3*g3^3*g4^5*t^8.91 + 4*g2^10*g3^3*g4^5*t^8.91 + (2*g2^17*g3^3*g4^5*t^8.91)/g1 + (2*g1*g3^10*g4^5*t^8.91)/g2^4 + 4*g2^3*g3^10*g4^5*t^8.91 + (4*g2^10*g3^10*g4^5*t^8.91)/g1 + (2*g2^17*g3^10*g4^5*t^8.91)/g1^2 + (g3^17*g4^5*t^8.91)/g2^4 + (2*g2^3*g3^17*g4^5*t^8.91)/g1 + (2*g2^10*g3^17*g4^5*t^8.91)/g1^2 + (g2^17*g3^17*g4^5*t^8.91)/g1^3 + (g1^3*g2^3*t^8.97)/(g3^4*g4^2) + (g1^2*g2^10*t^8.97)/(g3^4*g4^2) + (g1*g2^17*t^8.97)/(g3^4*g4^2) + (g1^3*g3^3*t^8.97)/(g2^4*g4^2) + (2*g1^2*g2^3*g3^3*t^8.97)/g4^2 + (3*g1*g2^10*g3^3*t^8.97)/g4^2 + (2*g2^17*g3^3*t^8.97)/g4^2 + (g2^24*g3^3*t^8.97)/(g1*g4^2) + (g1^2*g3^10*t^8.97)/(g2^4*g4^2) + (3*g1*g2^3*g3^10*t^8.97)/g4^2 + (2*g2^10*g3^10*t^8.97)/g4^2 + (3*g2^17*g3^10*t^8.97)/(g1*g4^2) + (g2^24*g3^10*t^8.97)/(g1^2*g4^2) + (g1*g3^17*t^8.97)/(g2^4*g4^2) + (2*g2^3*g3^17*t^8.97)/g4^2 + (3*g2^10*g3^17*t^8.97)/(g1*g4^2) + (2*g2^17*g3^17*t^8.97)/(g1^2*g4^2) + (g2^24*g3^17*t^8.97)/(g1^3*g4^2) + (g2^3*g3^24*t^8.97)/(g1*g4^2) + (g2^10*g3^24*t^8.97)/(g1^2*g4^2) + (g2^17*g3^24*t^8.97)/(g1^3*g4^2) - t^4.71/(g2^4*g3^4*g4^2*y) - t^7.08/(g2^11*g3^11*g4^2*y) + (g2*g3*g4^4*t^7.95)/y + (g2^3*g3^3*t^8.34)/(g4^2*y) + (g4^7*t^8.94)/(g1*y) + (g4^7*t^8.94)/(g2^7*y) + (g4^7*t^8.94)/(g3^7*y) + (g1*g4^7*t^8.94)/(g2^7*g3^7*y) - (t^4.71*y)/(g2^4*g3^4*g4^2) - (t^7.08*y)/(g2^11*g3^11*g4^2) + g2*g3*g4^4*t^7.95*y + (g2^3*g3^3*t^8.34*y)/g4^2 + (g4^7*t^8.94*y)/g1 + (g4^7*t^8.94*y)/g2^7 + (g4^7*t^8.94*y)/g3^7 + (g1*g4^7*t^8.94*y)/(g2^7*g3^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55602 SU2adj1nf3 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ 0.8901 1.0957 0.8124 [X:[], M:[0.7598, 0.8431], q:[0.6201, 0.6201, 0.6029], qb:[0.6201, 0.6201, 0.6029], phi:[0.5785]] t^2.28 + t^2.53 + t^3.62 + 8*t^3.67 + 5*t^3.72 + t^4.56 + t^4.81 + t^5.06 + 3*t^5.35 + 8*t^5.4 + 10*t^5.46 + t^5.9 - 15*t^6. - t^4.74/y - t^4.74*y detail