Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55742 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2q_3$ + $ \phi_1\tilde{q}_1^2$ | 0.9105 | 1.1311 | 0.8049 | [X:[], M:[0.7185, 0.7185, 0.7185], q:[0.6408, 0.6408, 0.6408], qb:[0.7314, 0.5989, 0.5989], phi:[0.5371]] | [X:[], M:[[0, 1, -7, 1, 1], [1, 0, -7, 1, 1], [-1, -1, 0, 0, 0]], q:[[-1, -1, 7, -1, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, 0, -2, 0, 0]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_2$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_1$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_3$, $ \phi_1q_1q_2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_3q_1\tilde{q}_3$, $ M_3q_3\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_1q_3\tilde{q}_2$ | . | -13 | 3*t^2.16 + t^3.22 + t^3.59 + 6*t^3.72 + 2*t^3.99 + 3*t^4.12 + 6*t^4.31 + 3*t^5.2 + 6*t^5.33 + 3*t^5.38 + 6*t^5.46 + 3*t^5.75 + 12*t^5.87 - 13*t^6. - 6*t^6.13 + 6*t^6.15 + 6*t^6.27 - 2*t^6.4 + t^6.45 + 10*t^6.47 + t^6.82 + 6*t^6.94 + t^7.19 + 6*t^7.31 + 9*t^7.36 + 18*t^7.44 + 12*t^7.49 + 6*t^7.53 - 2*t^7.56 + 2*t^7.58 + 6*t^7.61 + 12*t^7.71 - 6*t^7.74 + 12*t^7.84 + 6*t^7.9 - t^7.96 + 18*t^8.03 - 33*t^8.16 - 12*t^8.28 + 12*t^8.3 - 2*t^8.38 + 3*t^8.41 + 12*t^8.43 - 3*t^8.51 + 3*t^8.6 + 15*t^8.62 + 6*t^8.68 - t^8.78 + 3*t^8.8 + 18*t^8.92 + 3*t^8.97 - t^4.61/y - (3*t^6.77)/y + (3*t^7.31)/y + t^7.39/y - t^7.83/y + (3*t^8.38)/y + (3*t^8.46)/y + (3*t^8.75)/y + (18*t^8.87)/y - (6*t^8.92)/y - t^4.61*y - 3*t^6.77*y + 3*t^7.31*y + t^7.39*y - t^7.83*y + 3*t^8.38*y + 3*t^8.46*y + 3*t^8.75*y + 18*t^8.87*y - 6*t^8.92*y | t^2.16/(g1*g2) + (g1*g4*g5*t^2.16)/g3^7 + (g2*g4*g5*t^2.16)/g3^7 + t^3.22/g3^4 + g4*g5*t^3.59 + (g3^7*t^3.72)/(g1*g2*g4) + g1*g4*t^3.72 + g2*g4*t^3.72 + (g3^7*t^3.72)/(g1*g2*g5) + g1*g5*t^3.72 + g2*g5*t^3.72 + g3*g4*t^3.99 + g3*g5*t^3.99 + g1*g3*t^4.12 + g2*g3*t^4.12 + (g3^8*t^4.12)/(g1*g2*g4*g5) + t^4.31/(g1^2*g2^2) + (g4*g5*t^4.31)/(g1*g3^7) + (g4*g5*t^4.31)/(g2*g3^7) + (g1^2*g4^2*g5^2*t^4.31)/g3^14 + (g1*g2*g4^2*g5^2*t^4.31)/g3^14 + (g2^2*g4^2*g5^2*t^4.31)/g3^14 + (g4^2*t^5.2)/g3^2 + (g4*g5*t^5.2)/g3^2 + (g5^2*t^5.2)/g3^2 + (g3^5*t^5.33)/(g1*g2*g4) + (g1*g4*t^5.33)/g3^2 + (g2*g4*t^5.33)/g3^2 + (g3^5*t^5.33)/(g1*g2*g5) + (g1*g5*t^5.33)/g3^2 + (g2*g5*t^5.33)/g3^2 + t^5.38/(g1*g2*g3^4) + (g1*g4*g5*t^5.38)/g3^11 + (g2*g4*g5*t^5.38)/g3^11 + (g1^2*t^5.46)/g3^2 + (g1*g2*t^5.46)/g3^2 + (g2^2*t^5.46)/g3^2 + (g3^12*t^5.46)/(g1^2*g2^2*g4^2*g5^2) + (g3^5*t^5.46)/(g1*g4*g5) + (g3^5*t^5.46)/(g2*g4*g5) + (g4*g5*t^5.75)/(g1*g2) + (g1*g4^2*g5^2*t^5.75)/g3^7 + (g2*g4^2*g5^2*t^5.75)/g3^7 + (g3^7*t^5.87)/(g1^2*g2^2*g4) + (g4*t^5.87)/g1 + (g4*t^5.87)/g2 + (g3^7*t^5.87)/(g1^2*g2^2*g5) + (g5*t^5.87)/g1 + (g5*t^5.87)/g2 + (g1^2*g4^2*g5*t^5.87)/g3^7 + (g1*g2*g4^2*g5*t^5.87)/g3^7 + (g2^2*g4^2*g5*t^5.87)/g3^7 + (g1^2*g4*g5^2*t^5.87)/g3^7 + (g1*g2*g4*g5^2*t^5.87)/g3^7 + (g2^2*g4*g5^2*t^5.87)/g3^7 - 5*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 - (g3^7*t^6.)/(g1*g2^2*g4*g5) - (g3^7*t^6.)/(g1^2*g2*g4*g5) - (g4*t^6.)/g5 - (g5*t^6.)/g4 - (g1^2*g2*g4*g5*t^6.)/g3^7 - (g1*g2^2*g4*g5*t^6.)/g3^7 - (g1*t^6.13)/g4 - (g2*t^6.13)/g4 - (g3^7*t^6.13)/(g1*g2*g4*g5^2) - (g1*t^6.13)/g5 - (g2*t^6.13)/g5 - (g3^7*t^6.13)/(g1*g2*g4^2*g5) + (g3*g4*t^6.15)/(g1*g2) + (g3*g5*t^6.15)/(g1*g2) + (g1*g4^2*g5*t^6.15)/g3^6 + (g2*g4^2*g5*t^6.15)/g3^6 + (g1*g4*g5^2*t^6.15)/g3^6 + (g2*g4*g5^2*t^6.15)/g3^6 + (g3*t^6.27)/g1 + (g3*t^6.27)/g2 + (g3^8*t^6.27)/(g1^2*g2^2*g4*g5) + (g1^2*g4*g5*t^6.27)/g3^6 + (g1*g2*g4*g5*t^6.27)/g3^6 + (g2^2*g4*g5*t^6.27)/g3^6 - (g3*t^6.4)/g4 - (g3*t^6.4)/g5 + t^6.45/g3^8 + t^6.47/(g1^3*g2^3) + (g4*g5*t^6.47)/(g1*g2^2*g3^7) + (g4*g5*t^6.47)/(g1^2*g2*g3^7) + (g4^2*g5^2*t^6.47)/g3^14 + (g1*g4^2*g5^2*t^6.47)/(g2*g3^14) + (g2*g4^2*g5^2*t^6.47)/(g1*g3^14) + (g1^3*g4^3*g5^3*t^6.47)/g3^21 + (g1^2*g2*g4^3*g5^3*t^6.47)/g3^21 + (g1*g2^2*g4^3*g5^3*t^6.47)/g3^21 + (g2^3*g4^3*g5^3*t^6.47)/g3^21 + (g4*g5*t^6.82)/g3^4 + (g3^3*t^6.94)/(g1*g2*g4) + (g1*g4*t^6.94)/g3^4 + (g2*g4*t^6.94)/g3^4 + (g3^3*t^6.94)/(g1*g2*g5) + (g1*g5*t^6.94)/g3^4 + (g2*g5*t^6.94)/g3^4 + g4^2*g5^2*t^7.19 + (g3^7*g4*t^7.31)/(g1*g2) + (g3^7*g5*t^7.31)/(g1*g2) + g1*g4^2*g5*t^7.31 + g2*g4^2*g5*t^7.31 + g1*g4*g5^2*t^7.31 + g2*g4*g5^2*t^7.31 + (g4^2*t^7.36)/(g1*g2*g3^2) + (g4*g5*t^7.36)/(g1*g2*g3^2) + (g1*g4^3*g5*t^7.36)/g3^9 + (g2*g4^3*g5*t^7.36)/g3^9 + (g5^2*t^7.36)/(g1*g2*g3^2) + (g1*g4^2*g5^2*t^7.36)/g3^9 + (g2*g4^2*g5^2*t^7.36)/g3^9 + (g1*g4*g5^3*t^7.36)/g3^9 + (g2*g4*g5^3*t^7.36)/g3^9 + (g3^7*t^7.44)/g1 + (g3^7*t^7.44)/g2 + (g3^14*t^7.44)/(g1^2*g2^2*g4^2) + g1^2*g4^2*t^7.44 + g1*g2*g4^2*t^7.44 + g2^2*g4^2*t^7.44 + (g3^14*t^7.44)/(g1^2*g2^2*g5^2) + (g3^14*t^7.44)/(g1^2*g2^2*g4*g5) + (g3^7*g4*t^7.44)/(g1*g5) + (g3^7*g4*t^7.44)/(g2*g5) + (g3^7*g5*t^7.44)/(g1*g4) + (g3^7*g5*t^7.44)/(g2*g4) + g1^2*g4*g5*t^7.44 + g1*g2*g4*g5*t^7.44 + g2^2*g4*g5*t^7.44 + g1^2*g5^2*t^7.44 + g1*g2*g5^2*t^7.44 + g2^2*g5^2*t^7.44 + (g3^5*t^7.49)/(g1^2*g2^2*g4) + (g4*t^7.49)/(g1*g3^2) + (g4*t^7.49)/(g2*g3^2) + (g3^5*t^7.49)/(g1^2*g2^2*g5) + (g5*t^7.49)/(g1*g3^2) + (g5*t^7.49)/(g2*g3^2) + (g1^2*g4^2*g5*t^7.49)/g3^9 + (g1*g2*g4^2*g5*t^7.49)/g3^9 + (g2^2*g4^2*g5*t^7.49)/g3^9 + (g1^2*g4*g5^2*t^7.49)/g3^9 + (g1*g2*g4*g5^2*t^7.49)/g3^9 + (g2^2*g4*g5^2*t^7.49)/g3^9 + t^7.53/(g1^2*g2^2*g3^4) + (g4*g5*t^7.53)/(g1*g3^11) + (g4*g5*t^7.53)/(g2*g3^11) + (g1^2*g4^2*g5^2*t^7.53)/g3^18 + (g1*g2*g4^2*g5^2*t^7.53)/g3^18 + (g2^2*g4^2*g5^2*t^7.53)/g3^18 - (g3^7*t^7.56)/g4 - (g3^7*t^7.56)/g5 + g3*g4^2*g5*t^7.58 + g3*g4*g5^2*t^7.58 - t^7.61/g3^2 + (g1*t^7.61)/(g2*g3^2) + (g2*t^7.61)/(g1*g3^2) + (g3^12*t^7.61)/(g1^3*g2^3*g4^2*g5^2) + (g3^5*t^7.61)/(g1*g2^2*g4*g5) + (g3^5*t^7.61)/(g1^2*g2*g4*g5) - (g4*t^7.61)/(g3^2*g5) - (g5*t^7.61)/(g3^2*g4) + (g1^3*g4*g5*t^7.61)/g3^9 + (g1^2*g2*g4*g5*t^7.61)/g3^9 + (g1*g2^2*g4*g5*t^7.61)/g3^9 + (g2^3*g4*g5*t^7.61)/g3^9 + (2*g3^8*t^7.71)/(g1*g2) + g1*g3*g4^2*t^7.71 + g2*g3*g4^2*t^7.71 + (g3^8*g4*t^7.71)/(g1*g2*g5) + (g3^8*g5*t^7.71)/(g1*g2*g4) + 2*g1*g3*g4*g5*t^7.71 + 2*g2*g3*g4*g5*t^7.71 + g1*g3*g5^2*t^7.71 + g2*g3*g5^2*t^7.71 - (g1*t^7.74)/(g3^2*g4) - (g2*t^7.74)/(g3^2*g4) - (g3^5*t^7.74)/(g1*g2*g4*g5^2) - (g1*t^7.74)/(g3^2*g5) - (g2*t^7.74)/(g3^2*g5) - (g3^5*t^7.74)/(g1*g2*g4^2*g5) + (g3^8*t^7.84)/(g1*g4) + (g3^8*t^7.84)/(g2*g4) + g1^2*g3*g4*t^7.84 + g1*g2*g3*g4*t^7.84 + g2^2*g3*g4*t^7.84 + (g3^15*t^7.84)/(g1^2*g2^2*g4*g5^2) + (g3^8*t^7.84)/(g1*g5) + (g3^8*t^7.84)/(g2*g5) + (g3^15*t^7.84)/(g1^2*g2^2*g4^2*g5) + g1^2*g3*g5*t^7.84 + g1*g2*g3*g5*t^7.84 + g2^2*g3*g5*t^7.84 + (g4*g5*t^7.9)/(g1^2*g2^2) + (g4^2*g5^2*t^7.9)/(g1*g3^7) + (g4^2*g5^2*t^7.9)/(g2*g3^7) + (g1^2*g4^3*g5^3*t^7.9)/g3^14 + (g1*g2*g4^3*g5^3*t^7.9)/g3^14 + (g2^2*g4^3*g5^3*t^7.9)/g3^14 - (g3^8*t^7.96)/(g4*g5) + (g3^7*t^8.03)/(g1^3*g2^3*g4) + (g4*t^8.03)/(g1*g2^2) + (g4*t^8.03)/(g1^2*g2) + (g3^7*t^8.03)/(g1^3*g2^3*g5) + (g5*t^8.03)/(g1*g2^2) + (g5*t^8.03)/(g1^2*g2) + (g1*g4^2*g5*t^8.03)/(g2*g3^7) + (g2*g4^2*g5*t^8.03)/(g1*g3^7) + (g1*g4*g5^2*t^8.03)/(g2*g3^7) + (g2*g4*g5^2*t^8.03)/(g1*g3^7) + (g1^3*g4^3*g5^2*t^8.03)/g3^14 + (g1^2*g2*g4^3*g5^2*t^8.03)/g3^14 + (g1*g2^2*g4^3*g5^2*t^8.03)/g3^14 + (g2^3*g4^3*g5^2*t^8.03)/g3^14 + (g1^3*g4^2*g5^3*t^8.03)/g3^14 + (g1^2*g2*g4^2*g5^3*t^8.03)/g3^14 + (g1*g2^2*g4^2*g5^3*t^8.03)/g3^14 + (g2^3*g4^2*g5^3*t^8.03)/g3^14 - t^8.16/g1^2 - t^8.16/g2^2 - (6*t^8.16)/(g1*g2) - (g1*g4^2*t^8.16)/g3^7 - (g2*g4^2*t^8.16)/g3^7 - (g3^7*t^8.16)/(g1^2*g2^3*g4*g5) - (g3^7*t^8.16)/(g1^3*g2^2*g4*g5) - (g4*t^8.16)/(g1*g2*g5) - (g5*t^8.16)/(g1*g2*g4) - (6*g1*g4*g5*t^8.16)/g3^7 - (g1^2*g4*g5*t^8.16)/(g2*g3^7) - (6*g2*g4*g5*t^8.16)/g3^7 - (g2^2*g4*g5*t^8.16)/(g1*g3^7) - (g1*g5^2*t^8.16)/g3^7 - (g2*g5^2*t^8.16)/g3^7 - (g1^3*g2*g4^2*g5^2*t^8.16)/g3^14 - (g1^2*g2^2*g4^2*g5^2*t^8.16)/g3^14 - (g1*g2^3*g4^2*g5^2*t^8.16)/g3^14 - t^8.28/(g1*g4) - t^8.28/(g2*g4) - (g1^2*g4*t^8.28)/g3^7 - (g1*g2*g4*t^8.28)/g3^7 - (g2^2*g4*t^8.28)/g3^7 - (g3^7*t^8.28)/(g1^2*g2^2*g4*g5^2) - t^8.28/(g1*g5) - t^8.28/(g2*g5) - (g3^7*t^8.28)/(g1^2*g2^2*g4^2*g5) - (g1^2*g5*t^8.28)/g3^7 - (g1*g2*g5*t^8.28)/g3^7 - (g2^2*g5*t^8.28)/g3^7 + (g3*g4*t^8.3)/(g1^2*g2^2) + (g3*g5*t^8.3)/(g1^2*g2^2) + (g4^2*g5*t^8.3)/(g1*g3^6) + (g4^2*g5*t^8.3)/(g2*g3^6) + (g4*g5^2*t^8.3)/(g1*g3^6) + (g4*g5^2*t^8.3)/(g2*g3^6) + (g1^2*g4^3*g5^2*t^8.3)/g3^13 + (g1*g2*g4^3*g5^2*t^8.3)/g3^13 + (g2^2*g4^3*g5^2*t^8.3)/g3^13 + (g1^2*g4^2*g5^3*t^8.3)/g3^13 + (g1*g2*g4^2*g5^3*t^8.3)/g3^13 + (g2^2*g4^2*g5^3*t^8.3)/g3^13 - g3^3*g4*t^8.38 - g3^3*g5*t^8.38 + t^8.41/g4^2 + t^8.41/g5^2 + t^8.41/(g4*g5) + (g3*t^8.43)/(g1*g2^2) + (g3*t^8.43)/(g1^2*g2) + (g4^2*t^8.43)/g3^6 + (g3^8*t^8.43)/(g1^3*g2^3*g4*g5) + (g4*g5*t^8.43)/g3^6 + (g1*g4*g5*t^8.43)/(g2*g3^6) + (g2*g4*g5*t^8.43)/(g1*g3^6) + (g5^2*t^8.43)/g3^6 + (g1^3*g4^2*g5^2*t^8.43)/g3^13 + (g1^2*g2*g4^2*g5^2*t^8.43)/g3^13 + (g1*g2^2*g4^2*g5^2*t^8.43)/g3^13 + (g2^3*g4^2*g5^2*t^8.43)/g3^13 - g1*g3^3*t^8.51 - g2*g3^3*t^8.51 - (g3^10*t^8.51)/(g1*g2*g4*g5) + t^8.6/(g1*g2*g3^8) + (g1*g4*g5*t^8.6)/g3^15 + (g2*g4*g5*t^8.6)/g3^15 + t^8.62/(g1^4*g2^4) + (g4*g5*t^8.62)/(g1^2*g2^3*g3^7) + (g4*g5*t^8.62)/(g1^3*g2^2*g3^7) + (g4^2*g5^2*t^8.62)/(g1^2*g3^14) + (g4^2*g5^2*t^8.62)/(g2^2*g3^14) + (g4^2*g5^2*t^8.62)/(g1*g2*g3^14) + (g1*g4^3*g5^3*t^8.62)/g3^21 + (g1^2*g4^3*g5^3*t^8.62)/(g2*g3^21) + (g2*g4^3*g5^3*t^8.62)/g3^21 + (g2^2*g4^3*g5^3*t^8.62)/(g1*g3^21) + (g1^4*g4^4*g5^4*t^8.62)/g3^28 + (g1^3*g2*g4^4*g5^4*t^8.62)/g3^28 + (g1^2*g2^2*g4^4*g5^4*t^8.62)/g3^28 + (g1*g2^3*g4^4*g5^4*t^8.62)/g3^28 + (g2^4*g4^4*g5^4*t^8.62)/g3^28 + (g1^2*t^8.68)/g3^6 + (g1*g2*t^8.68)/g3^6 + (g2^2*t^8.68)/g3^6 + (g3^8*t^8.68)/(g1^2*g2^2*g4^2*g5^2) + (g3*t^8.68)/(g1*g4*g5) + (g3*t^8.68)/(g2*g4*g5) - g3^4*t^8.78 + (g4^3*g5*t^8.8)/g3^2 + (g4^2*g5^2*t^8.8)/g3^2 + (g4*g5^3*t^8.8)/g3^2 + (2*g3^5*g4*t^8.92)/(g1*g2) + (g1*g4^3*t^8.92)/g3^2 + (g2*g4^3*t^8.92)/g3^2 + (g3^5*g4^2*t^8.92)/(g1*g2*g5) + (2*g3^5*g5*t^8.92)/(g1*g2) + (2*g1*g4^2*g5*t^8.92)/g3^2 + (2*g2*g4^2*g5*t^8.92)/g3^2 + (g3^5*g5^2*t^8.92)/(g1*g2*g4) + (2*g1*g4*g5^2*t^8.92)/g3^2 + (2*g2*g4*g5^2*t^8.92)/g3^2 + (g1*g5^3*t^8.92)/g3^2 + (g2*g5^3*t^8.92)/g3^2 + (g4*g5*t^8.97)/(g1*g2*g3^4) + (g1*g4^2*g5^2*t^8.97)/g3^11 + (g2*g4^2*g5^2*t^8.97)/g3^11 - t^4.61/(g3^2*y) - t^6.77/(g1*g2*g3^2*y) - (g1*g4*g5*t^6.77)/(g3^9*y) - (g2*g4*g5*t^6.77)/(g3^9*y) + (g4*g5*t^7.31)/(g1*g3^7*y) + (g4*g5*t^7.31)/(g2*g3^7*y) + (g1*g2*g4^2*g5^2*t^7.31)/(g3^14*y) + (g3^2*t^7.39)/y - t^7.83/(g3^6*y) + t^8.38/(g1*g2*g3^4*y) + (g1*g4*g5*t^8.38)/(g3^11*y) + (g2*g4*g5*t^8.38)/(g3^11*y) + (g1*g2*t^8.46)/(g3^2*y) + (g3^5*t^8.46)/(g1*g4*g5*y) + (g3^5*t^8.46)/(g2*g4*g5*y) + (g4*g5*t^8.75)/(g1*g2*y) + (g1*g4^2*g5^2*t^8.75)/(g3^7*y) + (g2*g4^2*g5^2*t^8.75)/(g3^7*y) + (g3^7*t^8.87)/(g1^2*g2^2*g4*y) + (2*g4*t^8.87)/(g1*y) + (2*g4*t^8.87)/(g2*y) + (g3^7*t^8.87)/(g1^2*g2^2*g5*y) + (2*g5*t^8.87)/(g1*y) + (2*g5*t^8.87)/(g2*y) + (g1^2*g4^2*g5*t^8.87)/(g3^7*y) + (2*g1*g2*g4^2*g5*t^8.87)/(g3^7*y) + (g2^2*g4^2*g5*t^8.87)/(g3^7*y) + (g1^2*g4*g5^2*t^8.87)/(g3^7*y) + (2*g1*g2*g4*g5^2*t^8.87)/(g3^7*y) + (g2^2*g4*g5^2*t^8.87)/(g3^7*y) - t^8.92/(g1^2*g2^2*g3^2*y) - (g4*g5*t^8.92)/(g1*g3^9*y) - (g4*g5*t^8.92)/(g2*g3^9*y) - (g1^2*g4^2*g5^2*t^8.92)/(g3^16*y) - (g1*g2*g4^2*g5^2*t^8.92)/(g3^16*y) - (g2^2*g4^2*g5^2*t^8.92)/(g3^16*y) - (t^4.61*y)/g3^2 - (t^6.77*y)/(g1*g2*g3^2) - (g1*g4*g5*t^6.77*y)/g3^9 - (g2*g4*g5*t^6.77*y)/g3^9 + (g4*g5*t^7.31*y)/(g1*g3^7) + (g4*g5*t^7.31*y)/(g2*g3^7) + (g1*g2*g4^2*g5^2*t^7.31*y)/g3^14 + g3^2*t^7.39*y - (t^7.83*y)/g3^6 + (t^8.38*y)/(g1*g2*g3^4) + (g1*g4*g5*t^8.38*y)/g3^11 + (g2*g4*g5*t^8.38*y)/g3^11 + (g1*g2*t^8.46*y)/g3^2 + (g3^5*t^8.46*y)/(g1*g4*g5) + (g3^5*t^8.46*y)/(g2*g4*g5) + (g4*g5*t^8.75*y)/(g1*g2) + (g1*g4^2*g5^2*t^8.75*y)/g3^7 + (g2*g4^2*g5^2*t^8.75*y)/g3^7 + (g3^7*t^8.87*y)/(g1^2*g2^2*g4) + (2*g4*t^8.87*y)/g1 + (2*g4*t^8.87*y)/g2 + (g3^7*t^8.87*y)/(g1^2*g2^2*g5) + (2*g5*t^8.87*y)/g1 + (2*g5*t^8.87*y)/g2 + (g1^2*g4^2*g5*t^8.87*y)/g3^7 + (2*g1*g2*g4^2*g5*t^8.87*y)/g3^7 + (g2^2*g4^2*g5*t^8.87*y)/g3^7 + (g1^2*g4*g5^2*t^8.87*y)/g3^7 + (2*g1*g2*g4*g5^2*t^8.87*y)/g3^7 + (g2^2*g4*g5^2*t^8.87*y)/g3^7 - (t^8.92*y)/(g1^2*g2^2*g3^2) - (g4*g5*t^8.92*y)/(g1*g3^9) - (g4*g5*t^8.92*y)/(g2*g3^9) - (g1^2*g4^2*g5^2*t^8.92*y)/g3^16 - (g1*g2*g4^2*g5^2*t^8.92*y)/g3^16 - (g2^2*g4^2*g5^2*t^8.92*y)/g3^16 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55594 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2q_3$ | 0.9189 | 1.1464 | 0.8015 | [X:[], M:[0.7021, 0.7021, 0.7021], q:[0.649, 0.649, 0.649], qb:[0.6185, 0.6185, 0.6185], phi:[0.5494]] | 3*t^2.11 + t^3.3 + 3*t^3.71 + 9*t^3.8 + 6*t^4.21 + 6*t^5.36 + 3*t^5.4 + 9*t^5.45 + 6*t^5.54 + 9*t^5.82 + 18*t^5.91 - 18*t^6. - t^4.65/y - t^4.65*y | detail |