Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55735 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_3q_2q_3$ | 0.8963 | 1.1054 | 0.8108 | [X:[], M:[0.7471, 0.7471, 0.7471], q:[0.6265, 0.6265, 0.6265], qb:[0.7412, 0.7412, 0.568], phi:[0.5175]] | [X:[], M:[[0, 1, -3, -3, 1], [1, 0, -3, -3, 1], [-1, -1, 0, 0, 0]], q:[[-1, -1, 3, 3, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, 0, -1, -1, 0]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_2$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_3$, $ \phi_1q_1q_2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_3q_1\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_1q_3\tilde{q}_3$ | . | -11 | 3*t^2.24 + t^3.11 + 3*t^3.58 + 2*t^3.93 + 6*t^4.1 + t^4.45 + 6*t^4.48 + t^4.96 + 3*t^5.14 + 6*t^5.31 + 3*t^5.35 + 6*t^5.82 - 11*t^6. + 6*t^6.17 - 3*t^6.18 + t^6.21 + 12*t^6.34 - 2*t^6.52 + 6*t^6.69 + 10*t^6.72 + 6*t^7.17 + 3*t^7.2 - t^7.34 + 6*t^7.38 + 6*t^7.51 + 9*t^7.55 + 6*t^7.59 + 12*t^7.69 - 3*t^7.73 + 9*t^8.03 + 10*t^8.07 + 12*t^8.21 - 24*t^8.24 + 12*t^8.41 + 3*t^8.45 + 3*t^8.54 + 19*t^8.59 + 6*t^8.72 - 6*t^8.76 + 9*t^8.89 + 12*t^8.93 + 15*t^8.96 - t^4.55/y - (3*t^6.79)/y + t^7.45/y + (3*t^7.48)/y - t^7.66/y + (3*t^8.31)/y + (3*t^8.35)/y + (9*t^8.82)/y - t^4.55*y - 3*t^6.79*y + t^7.45*y + 3*t^7.48*y - t^7.66*y + 3*t^8.31*y + 3*t^8.35*y + 9*t^8.82*y | t^2.24/(g1*g2) + (g1*g5*t^2.24)/(g3^3*g4^3) + (g2*g5*t^2.24)/(g3^3*g4^3) + t^3.11/(g3^2*g4^2) + (g3^3*g4^3*t^3.58)/(g1*g2) + g1*g5*t^3.58 + g2*g5*t^3.58 + g3*g5*t^3.93 + g4*g5*t^3.93 + g1*g3*t^4.1 + g2*g3*t^4.1 + g1*g4*t^4.1 + g2*g4*t^4.1 + (g3^4*g4^3*t^4.1)/(g1*g2*g5) + (g3^3*g4^4*t^4.1)/(g1*g2*g5) + g3*g4*t^4.45 + t^4.48/(g1^2*g2^2) + (g5*t^4.48)/(g1*g3^3*g4^3) + (g5*t^4.48)/(g2*g3^3*g4^3) + (g1^2*g5^2*t^4.48)/(g3^6*g4^6) + (g1*g2*g5^2*t^4.48)/(g3^6*g4^6) + (g2^2*g5^2*t^4.48)/(g3^6*g4^6) + (g5^2*t^4.96)/(g3*g4) + (g3^2*g4^2*t^5.14)/(g1*g2) + (g1*g5*t^5.14)/(g3*g4) + (g2*g5*t^5.14)/(g3*g4) + (g1^2*t^5.31)/(g3*g4) + (g1*g2*t^5.31)/(g3*g4) + (g2^2*t^5.31)/(g3*g4) + (g3^5*g4^5*t^5.31)/(g1^2*g2^2*g5^2) + (g3^2*g4^2*t^5.31)/(g1*g5) + (g3^2*g4^2*t^5.31)/(g2*g5) + t^5.35/(g1*g2*g3^2*g4^2) + (g1*g5*t^5.35)/(g3^5*g4^5) + (g2*g5*t^5.35)/(g3^5*g4^5) + (g3^3*g4^3*t^5.82)/(g1^2*g2^2) + (g5*t^5.82)/g1 + (g5*t^5.82)/g2 + (g1^2*g5^2*t^5.82)/(g3^3*g4^3) + (g1*g2*g5^2*t^5.82)/(g3^3*g4^3) + (g2^2*g5^2*t^5.82)/(g3^3*g4^3) - 5*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 - (g3^3*g4^3*t^6.)/(g1*g2^2*g5) - (g3^3*g4^3*t^6.)/(g1^2*g2*g5) - (g1^2*g2*g5*t^6.)/(g3^3*g4^3) - (g1*g2^2*g5*t^6.)/(g3^3*g4^3) + (g3*g5*t^6.17)/(g1*g2) + (g4*g5*t^6.17)/(g1*g2) + (g1*g5^2*t^6.17)/(g3^2*g4^3) + (g2*g5^2*t^6.17)/(g3^2*g4^3) + (g1*g5^2*t^6.17)/(g3^3*g4^2) + (g2*g5^2*t^6.17)/(g3^3*g4^2) - (g3^3*g4^3*t^6.18)/(g1*g2*g5^2) - (g1*t^6.18)/g5 - (g2*t^6.18)/g5 + t^6.21/(g3^4*g4^4) + (g3*t^6.34)/g1 + (g3*t^6.34)/g2 + (g4*t^6.34)/g1 + (g4*t^6.34)/g2 + (g3^4*g4^3*t^6.34)/(g1^2*g2^2*g5) + (g3^3*g4^4*t^6.34)/(g1^2*g2^2*g5) + (g1^2*g5*t^6.34)/(g3^2*g4^3) + (g1*g2*g5*t^6.34)/(g3^2*g4^3) + (g2^2*g5*t^6.34)/(g3^2*g4^3) + (g1^2*g5*t^6.34)/(g3^3*g4^2) + (g1*g2*g5*t^6.34)/(g3^3*g4^2) + (g2^2*g5*t^6.34)/(g3^3*g4^2) - (g3*t^6.52)/g5 - (g4*t^6.52)/g5 + (2*g3*g4*t^6.69)/(g1*g2) + (2*g1*g5*t^6.69)/(g3^2*g4^2) + (2*g2*g5*t^6.69)/(g3^2*g4^2) + t^6.72/(g1^3*g2^3) + (g5*t^6.72)/(g1*g2^2*g3^3*g4^3) + (g5*t^6.72)/(g1^2*g2*g3^3*g4^3) + (g5^2*t^6.72)/(g3^6*g4^6) + (g1*g5^2*t^6.72)/(g2*g3^6*g4^6) + (g2*g5^2*t^6.72)/(g1*g3^6*g4^6) + (g1^3*g5^3*t^6.72)/(g3^9*g4^9) + (g1^2*g2*g5^3*t^6.72)/(g3^9*g4^9) + (g1*g2^2*g5^3*t^6.72)/(g3^9*g4^9) + (g2^3*g5^3*t^6.72)/(g3^9*g4^9) + (g3^6*g4^6*t^7.17)/(g1^2*g2^2) + (g3^3*g4^3*g5*t^7.17)/g1 + (g3^3*g4^3*g5*t^7.17)/g2 + g1^2*g5^2*t^7.17 + g1*g2*g5^2*t^7.17 + g2^2*g5^2*t^7.17 + (g5^2*t^7.2)/(g1*g2*g3*g4) + (g1*g5^3*t^7.2)/(g3^4*g4^4) + (g2*g5^3*t^7.2)/(g3^4*g4^4) - g3^3*g4^3*t^7.34 + (g3^2*g4^2*t^7.38)/(g1^2*g2^2) + (g5*t^7.38)/(g1*g3*g4) + (g5*t^7.38)/(g2*g3*g4) + (g1^2*g5^2*t^7.38)/(g3^4*g4^4) + (g1*g2*g5^2*t^7.38)/(g3^4*g4^4) + (g2^2*g5^2*t^7.38)/(g3^4*g4^4) + (g3^4*g4^3*g5*t^7.51)/(g1*g2) + (g3^3*g4^4*g5*t^7.51)/(g1*g2) + g1*g3*g5^2*t^7.51 + g2*g3*g5^2*t^7.51 + g1*g4*g5^2*t^7.51 + g2*g4*g5^2*t^7.51 + (g1*t^7.55)/(g2*g3*g4) + (g2*t^7.55)/(g1*g3*g4) + (g3^5*g4^5*t^7.55)/(g1^3*g2^3*g5^2) + (g3^2*g4^2*t^7.55)/(g1*g2^2*g5) + (g3^2*g4^2*t^7.55)/(g1^2*g2*g5) + (g1^3*g5*t^7.55)/(g3^4*g4^4) + (g1^2*g2*g5*t^7.55)/(g3^4*g4^4) + (g1*g2^2*g5*t^7.55)/(g3^4*g4^4) + (g2^3*g5*t^7.55)/(g3^4*g4^4) + t^7.59/(g1^2*g2^2*g3^2*g4^2) + (g5*t^7.59)/(g1*g3^5*g4^5) + (g5*t^7.59)/(g2*g3^5*g4^5) + (g1^2*g5^2*t^7.59)/(g3^8*g4^8) + (g1*g2*g5^2*t^7.59)/(g3^8*g4^8) + (g2^2*g5^2*t^7.59)/(g3^8*g4^8) + (g3^4*g4^3*t^7.69)/g1 + (g3^4*g4^3*t^7.69)/g2 + (g3^3*g4^4*t^7.69)/g1 + (g3^3*g4^4*t^7.69)/g2 + (g3^7*g4^6*t^7.69)/(g1^2*g2^2*g5) + (g3^6*g4^7*t^7.69)/(g1^2*g2^2*g5) + g1^2*g3*g5*t^7.69 + g1*g2*g3*g5*t^7.69 + g2^2*g3*g5*t^7.69 + g1^2*g4*g5*t^7.69 + g1*g2*g4*g5*t^7.69 + g2^2*g4*g5*t^7.69 - (g3^2*g4^2*t^7.73)/(g1*g2*g5^2) - (g1*t^7.73)/(g3*g4*g5) - (g2*t^7.73)/(g3*g4*g5) - (g3^4*g4^3*t^7.86)/g5 - (g3^3*g4^4*t^7.86)/g5 + g3^2*g5^2*t^7.86 + g4^2*g5^2*t^7.86 + (g3^5*g4^3*t^8.03)/(g1*g2) + (g3^4*g4^4*t^8.03)/(g1*g2) + (g3^3*g4^5*t^8.03)/(g1*g2) + g1*g3^2*g5*t^8.03 + g2*g3^2*g5*t^8.03 + g1*g3*g4*g5*t^8.03 + g2*g3*g4*g5*t^8.03 + g1*g4^2*g5*t^8.03 + g2*g4^2*g5*t^8.03 + (g3^3*g4^3*t^8.07)/(g1^3*g2^3) + (g5*t^8.07)/(g1*g2^2) + (g5*t^8.07)/(g1^2*g2) + (g5^2*t^8.07)/(g3^3*g4^3) + (g1*g5^2*t^8.07)/(g2*g3^3*g4^3) + (g2*g5^2*t^8.07)/(g1*g3^3*g4^3) + (g1^3*g5^3*t^8.07)/(g3^6*g4^6) + (g1^2*g2*g5^3*t^8.07)/(g3^6*g4^6) + (g1*g2^2*g5^3*t^8.07)/(g3^6*g4^6) + (g2^3*g5^3*t^8.07)/(g3^6*g4^6) + g1^2*g3^2*t^8.21 + g1*g2*g3^2*t^8.21 + g2^2*g3^2*t^8.21 + g1^2*g4^2*t^8.21 + g1*g2*g4^2*t^8.21 + g2^2*g4^2*t^8.21 + (g3^8*g4^6*t^8.21)/(g1^2*g2^2*g5^2) + (g3^6*g4^8*t^8.21)/(g1^2*g2^2*g5^2) + (g3^5*g4^3*t^8.21)/(g1*g5) + (g3^5*g4^3*t^8.21)/(g2*g5) + (g3^3*g4^5*t^8.21)/(g1*g5) + (g3^3*g4^5*t^8.21)/(g2*g5) - t^8.24/g1^2 - t^8.24/g2^2 - (5*t^8.24)/(g1*g2) - (g3^3*g4^3*t^8.24)/(g1^2*g2^3*g5) - (g3^3*g4^3*t^8.24)/(g1^3*g2^2*g5) - (5*g1*g5*t^8.24)/(g3^3*g4^3) - (g1^2*g5*t^8.24)/(g2*g3^3*g4^3) - (5*g2*g5*t^8.24)/(g3^3*g4^3) - (g2^2*g5*t^8.24)/(g1*g3^3*g4^3) - (g1^3*g2*g5^2*t^8.24)/(g3^6*g4^6) - (g1^2*g2^2*g5^2*t^8.24)/(g3^6*g4^6) - (g1*g2^3*g5^2*t^8.24)/(g3^6*g4^6) + (g3*g5*t^8.41)/(g1^2*g2^2) + (g4*g5*t^8.41)/(g1^2*g2^2) + (g5^2*t^8.41)/(g1*g3^2*g4^3) + (g5^2*t^8.41)/(g2*g3^2*g4^3) + (g5^2*t^8.41)/(g1*g3^3*g4^2) + (g5^2*t^8.41)/(g2*g3^3*g4^2) + (g1^2*g5^3*t^8.41)/(g3^5*g4^6) + (g1*g2*g5^3*t^8.41)/(g3^5*g4^6) + (g2^2*g5^3*t^8.41)/(g3^5*g4^6) + (g1^2*g5^3*t^8.41)/(g3^6*g4^5) + (g1*g2*g5^3*t^8.41)/(g3^6*g4^5) + (g2^2*g5^3*t^8.41)/(g3^6*g4^5) + t^8.45/(g1*g2*g3^4*g4^4) + (g1*g5*t^8.45)/(g3^7*g4^7) + (g2*g5*t^8.45)/(g3^7*g4^7) + (g3^2*g4^2*g5^2*t^8.54)/(g1*g2) + (g1*g5^3*t^8.54)/(g3*g4) + (g2*g5^3*t^8.54)/(g3*g4) + (g3*t^8.59)/(g1*g2^2) + (g3*t^8.59)/(g1^2*g2) + (g4*t^8.59)/(g1*g2^2) + (g4*t^8.59)/(g1^2*g2) + t^8.59/g5^2 + (g3^4*g4^3*t^8.59)/(g1^3*g2^3*g5) + (g3^3*g4^4*t^8.59)/(g1^3*g2^3*g5) + (g1*g5*t^8.59)/(g2*g3^2*g4^3) + (g2*g5*t^8.59)/(g1*g3^2*g4^3) + (g1*g5*t^8.59)/(g2*g3^3*g4^2) + (g2*g5*t^8.59)/(g1*g3^3*g4^2) + (g1^3*g5^2*t^8.59)/(g3^5*g4^6) + (g1^2*g2*g5^2*t^8.59)/(g3^5*g4^6) + (g1*g2^2*g5^2*t^8.59)/(g3^5*g4^6) + (g2^3*g5^2*t^8.59)/(g3^5*g4^6) + (g1^3*g5^2*t^8.59)/(g3^6*g4^5) + (g1^2*g2*g5^2*t^8.59)/(g3^6*g4^5) + (g1*g2^2*g5^2*t^8.59)/(g3^6*g4^5) + (g2^3*g5^2*t^8.59)/(g3^6*g4^5) + (g3^5*g4^5*t^8.72)/(g1^2*g2^2) + (g3^2*g4^2*g5*t^8.72)/g1 + (g3^2*g4^2*g5*t^8.72)/g2 + (g1^2*g5^2*t^8.72)/(g3*g4) + (g1*g2*g5^2*t^8.72)/(g3*g4) + (g2^2*g5^2*t^8.72)/(g3*g4) - (g1*t^8.76)/(g3^2*g4^3) - (g2*t^8.76)/(g3^2*g4^3) - (g1*t^8.76)/(g3^3*g4^2) - (g2*t^8.76)/(g3^3*g4^2) - (g3*t^8.76)/(g1*g2*g5) - (g4*t^8.76)/(g1*g2*g5) - g3^3*g4*t^8.89 + (g1*g3^2*g4^2*t^8.89)/g2 + (g2*g3^2*g4^2*t^8.89)/g1 - g3*g4^3*t^8.89 + (g3^8*g4^8*t^8.89)/(g1^3*g2^3*g5^2) + (g3^5*g4^5*t^8.89)/(g1*g2^2*g5) + (g3^5*g4^5*t^8.89)/(g1^2*g2*g5) + (g1^3*g5*t^8.89)/(g3*g4) + (g1^2*g2*g5*t^8.89)/(g3*g4) + (g1*g2^2*g5*t^8.89)/(g3*g4) + (g2^3*g5*t^8.89)/(g3*g4) + (g5^3*t^8.89)/g3 + (g5^3*t^8.89)/g4 + (2*g3*g4*t^8.93)/(g1^2*g2^2) + (2*g5*t^8.93)/(g1*g3^2*g4^2) + (2*g5*t^8.93)/(g2*g3^2*g4^2) + (2*g1^2*g5^2*t^8.93)/(g3^5*g4^5) + (2*g1*g2*g5^2*t^8.93)/(g3^5*g4^5) + (2*g2^2*g5^2*t^8.93)/(g3^5*g4^5) + t^8.96/(g1^4*g2^4) + (g5*t^8.96)/(g1^2*g2^3*g3^3*g4^3) + (g5*t^8.96)/(g1^3*g2^2*g3^3*g4^3) + (g5^2*t^8.96)/(g1^2*g3^6*g4^6) + (g5^2*t^8.96)/(g2^2*g3^6*g4^6) + (g5^2*t^8.96)/(g1*g2*g3^6*g4^6) + (g1*g5^3*t^8.96)/(g3^9*g4^9) + (g1^2*g5^3*t^8.96)/(g2*g3^9*g4^9) + (g2*g5^3*t^8.96)/(g3^9*g4^9) + (g2^2*g5^3*t^8.96)/(g1*g3^9*g4^9) + (g1^4*g5^4*t^8.96)/(g3^12*g4^12) + (g1^3*g2*g5^4*t^8.96)/(g3^12*g4^12) + (g1^2*g2^2*g5^4*t^8.96)/(g3^12*g4^12) + (g1*g2^3*g5^4*t^8.96)/(g3^12*g4^12) + (g2^4*g5^4*t^8.96)/(g3^12*g4^12) - t^4.55/(g3*g4*y) - t^6.79/(g1*g2*g3*g4*y) - (g1*g5*t^6.79)/(g3^4*g4^4*y) - (g2*g5*t^6.79)/(g3^4*g4^4*y) + (g3*g4*t^7.45)/y + (g5*t^7.48)/(g1*g3^3*g4^3*y) + (g5*t^7.48)/(g2*g3^3*g4^3*y) + (g1*g2*g5^2*t^7.48)/(g3^6*g4^6*y) - t^7.66/(g3^3*g4^3*y) + (g1*g2*t^8.31)/(g3*g4*y) + (g3^2*g4^2*t^8.31)/(g1*g5*y) + (g3^2*g4^2*t^8.31)/(g2*g5*y) + t^8.35/(g1*g2*g3^2*g4^2*y) + (g1*g5*t^8.35)/(g3^5*g4^5*y) + (g2*g5*t^8.35)/(g3^5*g4^5*y) + (g3^3*g4^3*t^8.82)/(g1^2*g2^2*y) + (2*g5*t^8.82)/(g1*y) + (2*g5*t^8.82)/(g2*y) + (g1^2*g5^2*t^8.82)/(g3^3*g4^3*y) + (2*g1*g2*g5^2*t^8.82)/(g3^3*g4^3*y) + (g2^2*g5^2*t^8.82)/(g3^3*g4^3*y) - (t^4.55*y)/(g3*g4) - (t^6.79*y)/(g1*g2*g3*g4) - (g1*g5*t^6.79*y)/(g3^4*g4^4) - (g2*g5*t^6.79*y)/(g3^4*g4^4) + g3*g4*t^7.45*y + (g5*t^7.48*y)/(g1*g3^3*g4^3) + (g5*t^7.48*y)/(g2*g3^3*g4^3) + (g1*g2*g5^2*t^7.48*y)/(g3^6*g4^6) - (t^7.66*y)/(g3^3*g4^3) + (g1*g2*t^8.31*y)/(g3*g4) + (g3^2*g4^2*t^8.31*y)/(g1*g5) + (g3^2*g4^2*t^8.31*y)/(g2*g5) + (t^8.35*y)/(g1*g2*g3^2*g4^2) + (g1*g5*t^8.35*y)/(g3^5*g4^5) + (g2*g5*t^8.35*y)/(g3^5*g4^5) + (g3^3*g4^3*t^8.82*y)/(g1^2*g2^2) + (2*g5*t^8.82*y)/g1 + (2*g5*t^8.82*y)/g2 + (g1^2*g5^2*t^8.82*y)/(g3^3*g4^3) + (2*g1*g2*g5^2*t^8.82*y)/(g3^3*g4^3) + (g2^2*g5^2*t^8.82*y)/(g3^3*g4^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55670 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ | 0.878 | 1.0728 | 0.8184 | [X:[], M:[0.7561, 0.7561], q:[0.639, 0.6049, 0.6049], qb:[0.737, 0.737, 0.5735], phi:[0.5259]] | 2*t^2.27 + t^3.16 + 2*t^3.54 + t^3.63 + t^3.64 + 2*t^3.93 + 4*t^4.03 + 2*t^4.13 + t^4.42 + 3*t^4.54 + t^5.02 + 2*t^5.11 + 3*t^5.21 + t^5.22 + 2*t^5.31 + t^5.41 + 2*t^5.42 + 3*t^5.8 - 7*t^6. - t^4.58/y - t^4.58*y | detail |