Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55734 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_3q_3\tilde{q}_3$ 0.8948 1.1002 0.8133 [X:[], M:[0.7704, 0.7416, 0.7704], q:[0.6292, 0.6004, 0.6292], qb:[0.7432, 0.7432, 0.6004], phi:[0.5136]] [X:[], M:[[0, 1, -3, -3, 1], [1, 0, -3, -3, 1], [0, -1, 0, 0, -1]], q:[[-1, -1, 3, 3, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, 0, -1, -1, 0]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_3$, $ M_1$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_2q_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_3$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_1$, $ M_2^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_1M_2$, $ M_1M_3$, $ M_3^2$, $ M_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2q_3$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1q_2$, $ \phi_1q_3\tilde{q}_3$, $ M_2\phi_1^2$, $ \phi_1q_3^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_3$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_2\tilde{q}_3$ $M_3q_1\tilde{q}_3$ -5 t^2.22 + 2*t^2.31 + t^3.08 + t^3.6 + 2*t^3.69 + 4*t^4.03 + 4*t^4.12 + t^4.45 + t^4.46 + 2*t^4.54 + 3*t^4.62 + 3*t^5.14 + 4*t^5.23 + t^5.31 + 3*t^5.32 + 2*t^5.39 + t^5.83 - 5*t^6. - 4*t^6.09 + t^6.16 + 4*t^6.26 + 8*t^6.34 + 4*t^6.43 + t^6.67 + 2*t^6.68 + 2*t^6.76 + 4*t^6.77 + 3*t^6.85 + 4*t^6.93 + t^7.2 + 2*t^7.29 + 3*t^7.37 + 2*t^7.38 + 6*t^7.45 + t^7.53 + 4*t^7.54 + 2*t^7.62 + 6*t^7.63 + 3*t^7.7 + 8*t^7.72 + 4*t^7.81 + t^8.05 + 7*t^8.06 + 10*t^8.15 - 4*t^8.22 + 6*t^8.23 - 8*t^8.31 + t^8.39 - 2*t^8.4 + 2*t^8.47 + 4*t^8.48 + 8*t^8.57 + 8*t^8.65 + 4*t^8.74 + 3*t^8.75 + 6*t^8.83 + t^8.9 + 2*t^8.91 + 2*t^8.92 + 2*t^8.99 - t^4.54/y - t^6.77/y - (2*t^6.85)/y + t^7.46/y + (2*t^7.54)/y + (2*t^8.23)/y + t^8.31/y + t^8.32/y + (2*t^8.39)/y + t^8.83/y + (4*t^8.91)/y - t^8.99/y - t^4.54*y - t^6.77*y - 2*t^6.85*y + t^7.46*y + 2*t^7.54*y + 2*t^8.23*y + t^8.31*y + t^8.32*y + 2*t^8.39*y + t^8.83*y + 4*t^8.91*y - t^8.99*y (g1*g5*t^2.22)/(g3^3*g4^3) + t^2.31/(g2*g5) + (g2*g5*t^2.31)/(g3^3*g4^3) + t^3.08/(g3^2*g4^2) + g1*g5*t^3.6 + g1*g2*t^3.69 + (g3^3*g4^3*t^3.69)/(g1*g2) + g1*g3*t^4.03 + g1*g4*t^4.03 + g3*g5*t^4.03 + g4*g5*t^4.03 + g2*g3*t^4.12 + g2*g4*t^4.12 + (g3^4*g4^3*t^4.12)/(g1*g2*g5) + (g3^3*g4^4*t^4.12)/(g1*g2*g5) + (g1^2*g5^2*t^4.45)/(g3^6*g4^6) + g3*g4*t^4.46 + (g1*t^4.54)/(g2*g3^3*g4^3) + (g1*g2*g5^2*t^4.54)/(g3^6*g4^6) + t^4.62/(g3^3*g4^3) + t^4.62/(g2^2*g5^2) + (g2^2*g5^2*t^4.62)/(g3^6*g4^6) + (g1^2*t^5.14)/(g3*g4) + (g1*g5*t^5.14)/(g3*g4) + (g5^2*t^5.14)/(g3*g4) + (g1*g2*t^5.23)/(g3*g4) + (g3^2*g4^2*t^5.23)/(g1*g2) + (g3^2*g4^2*t^5.23)/(g2*g5) + (g2*g5*t^5.23)/(g3*g4) + (g1*g5*t^5.31)/(g3^5*g4^5) + (g2^2*t^5.32)/(g3*g4) + (g3^5*g4^5*t^5.32)/(g1^2*g2^2*g5^2) + (g3^2*g4^2*t^5.32)/(g1*g5) + t^5.39/(g2*g3^2*g4^2*g5) + (g2*g5*t^5.39)/(g3^5*g4^5) + (g1^2*g5^2*t^5.83)/(g3^3*g4^3) - 5*t^6. - (g2*t^6.09)/g1 - (g3^3*g4^3*t^6.09)/(g1*g2*g5^2) - (g2*t^6.09)/g5 - (g3^3*g4^3*t^6.09)/(g1^2*g2*g5) + t^6.16/(g3^4*g4^4) + (g1^2*g5*t^6.26)/(g3^2*g4^3) + (g1^2*g5*t^6.26)/(g3^3*g4^2) + (g1*g5^2*t^6.26)/(g3^2*g4^3) + (g1*g5^2*t^6.26)/(g3^3*g4^2) + (g3*t^6.34)/g2 + (g4*t^6.34)/g2 + (g1*g3*t^6.34)/(g2*g5) + (g1*g4*t^6.34)/(g2*g5) + (g1*g2*g5*t^6.34)/(g3^2*g4^3) + (g1*g2*g5*t^6.34)/(g3^3*g4^2) + (g2*g5^2*t^6.34)/(g3^2*g4^3) + (g2*g5^2*t^6.34)/(g3^3*g4^2) + (g3^4*g4^3*t^6.43)/(g1*g2^2*g5^2) + (g3^3*g4^4*t^6.43)/(g1*g2^2*g5^2) + (g2^2*g5*t^6.43)/(g3^2*g4^3) + (g2^2*g5*t^6.43)/(g3^3*g4^2) + (g1^3*g5^3*t^6.67)/(g3^9*g4^9) + (2*g1*g5*t^6.68)/(g3^2*g4^2) + (g1^2*g5*t^6.76)/(g2*g3^6*g4^6) + (g1^2*g2*g5^3*t^6.76)/(g3^9*g4^9) + (g1*g2*t^6.77)/(g3^2*g4^2) + (g3*g4*t^6.77)/(g1*g2) + (g3*g4*t^6.77)/(g2*g5) + (g2*g5*t^6.77)/(g3^2*g4^2) + (g1*t^6.85)/(g2^2*g3^3*g4^3*g5) + (g1*g5*t^6.85)/(g3^6*g4^6) + (g1*g2^2*g5^3*t^6.85)/(g3^9*g4^9) + t^6.93/(g2^3*g5^3) + t^6.93/(g2*g3^3*g4^3*g5) + (g2*g5*t^6.93)/(g3^6*g4^6) + (g2^3*g5^3*t^6.93)/(g3^9*g4^9) + g1^2*g5^2*t^7.2 + g1^2*g2*g5*t^7.29 + (g3^3*g4^3*g5*t^7.29)/g2 + (g1^3*g5*t^7.37)/(g3^4*g4^4) + (g1^2*g5^2*t^7.37)/(g3^4*g4^4) + (g1*g5^3*t^7.37)/(g3^4*g4^4) + g1^2*g2^2*t^7.38 + (g3^6*g4^6*t^7.38)/(g1^2*g2^2) + (g1*t^7.45)/(g2*g3*g4) + (g1^2*t^7.45)/(g2*g3*g4*g5) + (g1^2*g2*g5*t^7.45)/(g3^4*g4^4) + (g5*t^7.45)/(g2*g3*g4) + (g1*g2*g5^2*t^7.45)/(g3^4*g4^4) + (g2*g5^3*t^7.45)/(g3^4*g4^4) + (g1^2*g5^2*t^7.53)/(g3^8*g4^8) + (g3^2*g4^2*t^7.54)/(g2^2*g5^2) + (g3^2*g4^2*t^7.54)/(g1*g2^2*g5) + (g1*g2^2*g5*t^7.54)/(g3^4*g4^4) + (g2^2*g5^2*t^7.54)/(g3^4*g4^4) + (g1*t^7.62)/(g2*g3^5*g4^5) + (g1*g2*g5^2*t^7.62)/(g3^8*g4^8) + (g3^5*g4^5*t^7.63)/(g1^2*g2^3*g5^3) + g1^2*g3*g5*t^7.63 + (g2^3*g5*t^7.63)/(g3^4*g4^4) + g1^2*g4*g5*t^7.63 + g1*g3*g5^2*t^7.63 + g1*g4*g5^2*t^7.63 + t^7.7/(g3^5*g4^5) + t^7.7/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g5^2*t^7.7)/(g3^8*g4^8) + g1^2*g2*g3*t^7.72 + g1^2*g2*g4*t^7.72 + (g3^4*g4^3*t^7.72)/g2 + (g3^3*g4^4*t^7.72)/g2 + g1*g2*g3*g5*t^7.72 + g1*g2*g4*g5*t^7.72 + (g3^4*g4^3*g5*t^7.72)/(g1*g2) + (g3^3*g4^4*g5*t^7.72)/(g1*g2) + g1*g2^2*g3*t^7.81 + g1*g2^2*g4*t^7.81 + (g3^7*g4^6*t^7.81)/(g1^2*g2^2*g5) + (g3^6*g4^7*t^7.81)/(g1^2*g2^2*g5) + (g1^3*g5^3*t^8.05)/(g3^6*g4^6) + g1^2*g3^2*t^8.06 + g1^2*g4^2*t^8.06 + g1*g3^2*g5*t^8.06 + g1*g3*g4*g5*t^8.06 + g1*g4^2*g5*t^8.06 + g3^2*g5^2*t^8.06 + g4^2*g5^2*t^8.06 + g1*g2*g3^2*t^8.15 + g1*g2*g3*g4*t^8.15 + g1*g2*g4^2*t^8.15 + (g3^5*g4^3*t^8.15)/(g1*g2) + (g3^4*g4^4*t^8.15)/(g1*g2) + (g3^3*g4^5*t^8.15)/(g1*g2) + (g3^5*g4^3*t^8.15)/(g2*g5) + (g3^3*g4^5*t^8.15)/(g2*g5) + g2*g3^2*g5*t^8.15 + g2*g4^2*g5*t^8.15 - (4*g1*g5*t^8.22)/(g3^3*g4^3) + g2^2*g3^2*t^8.23 + g2^2*g4^2*t^8.23 + (g3^8*g4^6*t^8.23)/(g1^2*g2^2*g5^2) + (g3^6*g4^8*t^8.23)/(g1^2*g2^2*g5^2) + (g3^5*g4^3*t^8.23)/(g1*g5) + (g3^3*g4^5*t^8.23)/(g1*g5) - (4*t^8.31)/(g2*g5) - (4*g2*g5*t^8.31)/(g3^3*g4^3) + (g1*g5*t^8.39)/(g3^7*g4^7) - (g3^3*g4^3*t^8.4)/(g1*g2^2*g5^3) - (g2^2*g5*t^8.4)/(g1*g3^3*g4^3) + t^8.47/(g2*g3^4*g4^4*g5) + (g2*g5*t^8.47)/(g3^7*g4^7) + (g1^3*g5^2*t^8.48)/(g3^5*g4^6) + (g1^3*g5^2*t^8.48)/(g3^6*g4^5) + (g1^2*g5^3*t^8.48)/(g3^5*g4^6) + (g1^2*g5^3*t^8.48)/(g3^6*g4^5) + (g1^2*t^8.57)/(g2*g3^2*g4^3) + (g1^2*t^8.57)/(g2*g3^3*g4^2) + (g1*g5*t^8.57)/(g2*g3^2*g4^3) + (g1*g5*t^8.57)/(g2*g3^3*g4^2) + (g1^2*g2*g5^2*t^8.57)/(g3^5*g4^6) + (g1^2*g2*g5^2*t^8.57)/(g3^6*g4^5) + (g1*g2*g5^3*t^8.57)/(g3^5*g4^6) + (g1*g2*g5^3*t^8.57)/(g3^6*g4^5) + (g1*g3*t^8.65)/(g2^2*g5^2) + (g1*g4*t^8.65)/(g2^2*g5^2) + (g3*t^8.65)/(g2^2*g5) + (g4*t^8.65)/(g2^2*g5) + (g1*g2^2*g5^2*t^8.65)/(g3^5*g4^6) + (g1*g2^2*g5^2*t^8.65)/(g3^6*g4^5) + (g2^2*g5^3*t^8.65)/(g3^5*g4^6) + (g2^2*g5^3*t^8.65)/(g3^6*g4^5) + (g3^4*g4^3*t^8.74)/(g1*g2^3*g5^3) + (g3^3*g4^4*t^8.74)/(g1*g2^3*g5^3) + (g2^3*g5^2*t^8.74)/(g3^5*g4^6) + (g2^3*g5^2*t^8.74)/(g3^6*g4^5) + (g1^3*g5*t^8.75)/(g3*g4) + (g1^2*g5^2*t^8.75)/(g3*g4) + (g1*g5^3*t^8.75)/(g3*g4) + (g1^3*g2*t^8.83)/(g3*g4) + (g1*g3^2*g4^2*t^8.83)/g2 + (g1^2*g2*g5*t^8.83)/(g3*g4) + (g3^2*g4^2*g5*t^8.83)/g2 + (g1*g2*g5^2*t^8.83)/(g3*g4) + (g3^2*g4^2*g5^2*t^8.83)/(g1*g2) + (g1^4*g5^4*t^8.9)/(g3^12*g4^12) + (2*g1^2*g5^2*t^8.91)/(g3^5*g4^5) + (g1^2*g2^2*t^8.92)/(g3*g4) - g3^3*g4*t^8.92 - g3*g4^3*t^8.92 + (g3^5*g4^5*t^8.92)/(g1^2*g2^2) + (g3^5*g4^5*t^8.92)/(g1*g2^2*g5) + (g1*g2^2*g5*t^8.92)/(g3*g4) + (g1^3*g5^2*t^8.99)/(g2*g3^9*g4^9) + (g1^3*g2*g5^4*t^8.99)/(g3^12*g4^12) - t^4.54/(g3*g4*y) - (g1*g5*t^6.77)/(g3^4*g4^4*y) - t^6.85/(g2*g3*g4*g5*y) - (g2*g5*t^6.85)/(g3^4*g4^4*y) + (g3*g4*t^7.46)/y + (g1*t^7.54)/(g2*g3^3*g4^3*y) + (g1*g2*g5^2*t^7.54)/(g3^6*g4^6*y) + (g3^2*g4^2*t^8.23)/(g2*g5*y) + (g2*g5*t^8.23)/(g3*g4*y) + (g1*g5*t^8.31)/(g3^5*g4^5*y) + (g3^2*g4^2*t^8.32)/(g1*g5*y) + t^8.39/(g2*g3^2*g4^2*g5*y) + (g2*g5*t^8.39)/(g3^5*g4^5*y) + (g1^2*g5^2*t^8.83)/(g3^3*g4^3*y) + (g1*t^8.91)/(g2*y) + (g5*t^8.91)/(g2*y) + (g1^2*g2*g5*t^8.91)/(g3^3*g4^3*y) + (g1*g2*g5^2*t^8.91)/(g3^3*g4^3*y) - (g1^2*g5^2*t^8.99)/(g3^7*g4^7*y) - (t^4.54*y)/(g3*g4) - (g1*g5*t^6.77*y)/(g3^4*g4^4) - (t^6.85*y)/(g2*g3*g4*g5) - (g2*g5*t^6.85*y)/(g3^4*g4^4) + g3*g4*t^7.46*y + (g1*t^7.54*y)/(g2*g3^3*g4^3) + (g1*g2*g5^2*t^7.54*y)/(g3^6*g4^6) + (g3^2*g4^2*t^8.23*y)/(g2*g5) + (g2*g5*t^8.23*y)/(g3*g4) + (g1*g5*t^8.31*y)/(g3^5*g4^5) + (g3^2*g4^2*t^8.32*y)/(g1*g5) + (t^8.39*y)/(g2*g3^2*g4^2*g5) + (g2*g5*t^8.39*y)/(g3^5*g4^5) + (g1^2*g5^2*t^8.83*y)/(g3^3*g4^3) + (g1*t^8.91*y)/g2 + (g5*t^8.91*y)/g2 + (g1^2*g2*g5*t^8.91*y)/(g3^3*g4^3) + (g1*g2*g5^2*t^8.91*y)/(g3^3*g4^3) - (g1^2*g5^2*t^8.99*y)/(g3^7*g4^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55670 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ 0.878 1.0728 0.8184 [X:[], M:[0.7561, 0.7561], q:[0.639, 0.6049, 0.6049], qb:[0.737, 0.737, 0.5735], phi:[0.5259]] 2*t^2.27 + t^3.16 + 2*t^3.54 + t^3.63 + t^3.64 + 2*t^3.93 + 4*t^4.03 + 2*t^4.13 + t^4.42 + 3*t^4.54 + t^5.02 + 2*t^5.11 + 3*t^5.21 + t^5.22 + 2*t^5.31 + t^5.41 + 2*t^5.42 + 3*t^5.8 - 7*t^6. - t^4.58/y - t^4.58*y detail