Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55731 | SU2adj1nf3 | $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ | 0.9105 | 1.1313 | 0.8048 | [X:[], M:[0.7178, 0.7178, 0.7178], q:[0.7313, 0.663, 0.6191], qb:[0.6191, 0.6191, 0.599], phi:[0.5373]] | [X:[], M:[[-7, -7, 0, 0, 0], [-7, 0, -7, 0, 0], [-7, 0, 0, -7, 0]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ \phi_1^2$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_1$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_1q_3$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_1q_2$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_3\tilde{q}_1$, $ M_3q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_3\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$ | . | -11 | 3*t^2.15 + t^3.22 + 3*t^3.65 + 3*t^3.71 + t^3.79 + t^3.99 + 3*t^4.05 + t^4.18 + 6*t^4.31 + t^5.21 + 3*t^5.27 + 6*t^5.33 + 3*t^5.38 + t^5.4 + 3*t^5.46 + t^5.59 + 8*t^5.81 + 6*t^5.87 - 11*t^6. - 3*t^6.06 - 3*t^6.13 + 3*t^6.14 - t^6.19 + 8*t^6.2 - t^6.4 + t^6.45 + 10*t^6.46 + 3*t^6.88 + 3*t^6.94 + t^7.01 + 6*t^7.31 + 3*t^7.36 + 8*t^7.37 + 8*t^7.42 + 6*t^7.43 + 3*t^7.44 + 15*t^7.48 + 6*t^7.53 - t^7.56 + t^7.57 - t^7.61 + 3*t^7.65 - 3*t^7.67 + 9*t^7.71 + 8*t^7.77 + t^7.78 - t^7.8 + 3*t^7.84 + 15*t^7.96 + t^7.97 + 10*t^8.02 - 3*t^8.09 - 30*t^8.15 - 8*t^8.21 - 3*t^8.29 + 6*t^8.3 + 15*t^8.36 - t^8.38 + t^8.41 + t^8.43 - 3*t^8.44 + 3*t^8.55 - t^8.57 + 3*t^8.6 + 15*t^8.61 + t^8.62 + 3*t^8.68 - t^8.78 + t^8.81 + 3*t^8.86 + 9*t^8.92 + 18*t^8.98 + t^8.99 - t^4.61/y - (3*t^6.77)/y + (3*t^7.31)/y + t^7.39/y - t^7.84/y + (3*t^8.38)/y + (3*t^8.46)/y + (9*t^8.81)/y + (9*t^8.87)/y - (6*t^8.92)/y + (3*t^8.94)/y - t^4.61*y - 3*t^6.77*y + 3*t^7.31*y + t^7.39*y - t^7.84*y + 3*t^8.38*y + 3*t^8.46*y + 9*t^8.81*y + 9*t^8.87*y - 6*t^8.92*y + 3*t^8.94*y | t^2.15/(g1^7*g2^7) + t^2.15/(g1^7*g3^7) + t^2.15/(g1^7*g4^7) + t^3.22/(g1^4*g2^4*g3^4*g4^4*g5^4) + g2^7*g5^7*t^3.65 + g3^7*g5^7*t^3.65 + g4^7*g5^7*t^3.65 + g2^7*g3^7*t^3.71 + g2^7*g4^7*t^3.71 + g3^7*g4^7*t^3.71 + g1^7*g5^7*t^3.79 + g1*g2*g3*g4*g5^8*t^3.99 + g1*g2^8*g3*g4*g5*t^4.05 + g1*g2*g3^8*g4*g5*t^4.05 + g1*g2*g3*g4^8*g5*t^4.05 + g1^8*g2*g3*g4*g5*t^4.18 + t^4.31/(g1^14*g2^14) + t^4.31/(g1^14*g3^14) + t^4.31/(g1^14*g2^7*g3^7) + t^4.31/(g1^14*g4^14) + t^4.31/(g1^14*g2^7*g4^7) + t^4.31/(g1^14*g3^7*g4^7) + (g5^12*t^5.21)/(g1^2*g2^2*g3^2*g4^2) + (g2^5*g5^5*t^5.27)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.27)/(g1^2*g2^2*g4^2) + (g4^5*g5^5*t^5.27)/(g1^2*g2^2*g3^2) + (g2^12*t^5.33)/(g1^2*g3^2*g4^2*g5^2) + (g2^5*g3^5*t^5.33)/(g1^2*g4^2*g5^2) + (g3^12*t^5.33)/(g1^2*g2^2*g4^2*g5^2) + (g2^5*g4^5*t^5.33)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.33)/(g1^2*g2^2*g5^2) + (g4^12*t^5.33)/(g1^2*g2^2*g3^2*g5^2) + t^5.38/(g1^11*g2^4*g3^4*g4^11*g5^4) + t^5.38/(g1^11*g2^4*g3^11*g4^4*g5^4) + t^5.38/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g1^5*g5^5*t^5.4)/(g2^2*g3^2*g4^2) + (g1^5*g2^5*t^5.46)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.46)/(g2^2*g4^2*g5^2) + (g1^5*g4^5*t^5.46)/(g2^2*g3^2*g5^2) + (g1^12*t^5.59)/(g2^2*g3^2*g4^2*g5^2) + (2*g5^7*t^5.81)/g1^7 + (g2^7*g5^7*t^5.81)/(g1^7*g3^7) + (g3^7*g5^7*t^5.81)/(g1^7*g2^7) + (g2^7*g5^7*t^5.81)/(g1^7*g4^7) + (g3^7*g5^7*t^5.81)/(g1^7*g4^7) + (g4^7*g5^7*t^5.81)/(g1^7*g2^7) + (g4^7*g5^7*t^5.81)/(g1^7*g3^7) + (g2^7*t^5.87)/g1^7 + (g3^7*t^5.87)/g1^7 + (g2^7*g3^7*t^5.87)/(g1^7*g4^7) + (g4^7*t^5.87)/g1^7 + (g2^7*g4^7*t^5.87)/(g1^7*g3^7) + (g3^7*g4^7*t^5.87)/(g1^7*g2^7) - 5*t^6. - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g2^7 - (g2^7*t^6.)/g4^7 - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g2^7 - (g4^7*t^6.)/g3^7 - (g2^7*t^6.06)/g5^7 - (g3^7*t^6.06)/g5^7 - (g4^7*t^6.06)/g5^7 - (g1^7*t^6.13)/g2^7 - (g1^7*t^6.13)/g3^7 - (g1^7*t^6.13)/g4^7 + (g2*g3*g5^8*t^6.14)/(g1^6*g4^6) + (g2*g4*g5^8*t^6.14)/(g1^6*g3^6) + (g3*g4*g5^8*t^6.14)/(g1^6*g2^6) - (g1^7*t^6.19)/g5^7 + (g2^8*g3*g5*t^6.2)/(g1^6*g4^6) + (g2*g3^8*g5*t^6.2)/(g1^6*g4^6) + (g2^8*g4*g5*t^6.2)/(g1^6*g3^6) + (2*g2*g3*g4*g5*t^6.2)/g1^6 + (g3^8*g4*g5*t^6.2)/(g1^6*g2^6) + (g2*g4^8*g5*t^6.2)/(g1^6*g3^6) + (g3*g4^8*g5*t^6.2)/(g1^6*g2^6) - (g1*g2*g3*g4*t^6.4)/g5^6 + t^6.45/(g1^8*g2^8*g3^8*g4^8*g5^8) + t^6.46/(g1^21*g2^21) + t^6.46/(g1^21*g3^21) + t^6.46/(g1^21*g2^7*g3^14) + t^6.46/(g1^21*g2^14*g3^7) + t^6.46/(g1^21*g4^21) + t^6.46/(g1^21*g2^7*g4^14) + t^6.46/(g1^21*g3^7*g4^14) + t^6.46/(g1^21*g2^14*g4^7) + t^6.46/(g1^21*g3^14*g4^7) + t^6.46/(g1^21*g2^7*g3^7*g4^7) + (g2^3*g5^3*t^6.88)/(g1^4*g3^4*g4^4) + (g3^3*g5^3*t^6.88)/(g1^4*g2^4*g4^4) + (g4^3*g5^3*t^6.88)/(g1^4*g2^4*g3^4) + (g2^3*g3^3*t^6.94)/(g1^4*g4^4*g5^4) + (g2^3*g4^3*t^6.94)/(g1^4*g3^4*g5^4) + (g3^3*g4^3*t^6.94)/(g1^4*g2^4*g5^4) + (g1^3*g5^3*t^7.01)/(g2^4*g3^4*g4^4) + g2^14*g5^14*t^7.31 + g2^7*g3^7*g5^14*t^7.31 + g3^14*g5^14*t^7.31 + g2^7*g4^7*g5^14*t^7.31 + g3^7*g4^7*g5^14*t^7.31 + g4^14*g5^14*t^7.31 + (g5^12*t^7.36)/(g1^9*g2^2*g3^2*g4^9) + (g5^12*t^7.36)/(g1^9*g2^2*g3^9*g4^2) + (g5^12*t^7.36)/(g1^9*g2^9*g3^2*g4^2) + g2^14*g3^7*g5^7*t^7.37 + g2^7*g3^14*g5^7*t^7.37 + g2^14*g4^7*g5^7*t^7.37 + 2*g2^7*g3^7*g4^7*g5^7*t^7.37 + g3^14*g4^7*g5^7*t^7.37 + g2^7*g4^14*g5^7*t^7.37 + g3^7*g4^14*g5^7*t^7.37 + (g2^5*g5^5*t^7.42)/(g1^9*g3^2*g4^9) + (g3^5*g5^5*t^7.42)/(g1^9*g2^2*g4^9) + (g2^5*g5^5*t^7.42)/(g1^9*g3^9*g4^2) + (2*g5^5*t^7.42)/(g1^9*g2^2*g3^2*g4^2) + (g3^5*g5^5*t^7.42)/(g1^9*g2^9*g4^2) + (g4^5*g5^5*t^7.42)/(g1^9*g2^2*g3^9) + (g4^5*g5^5*t^7.42)/(g1^9*g2^9*g3^2) + g2^14*g3^14*t^7.43 + g2^14*g3^7*g4^7*t^7.43 + g2^7*g3^14*g4^7*t^7.43 + g2^14*g4^14*t^7.43 + g2^7*g3^7*g4^14*t^7.43 + g3^14*g4^14*t^7.43 + g1^7*g2^7*g5^14*t^7.44 + g1^7*g3^7*g5^14*t^7.44 + g1^7*g4^7*g5^14*t^7.44 + (g2^12*t^7.48)/(g1^9*g3^2*g4^9*g5^2) + (g2^5*g3^5*t^7.48)/(g1^9*g4^9*g5^2) + (g3^12*t^7.48)/(g1^9*g2^2*g4^9*g5^2) + (g2^12*t^7.48)/(g1^9*g3^9*g4^2*g5^2) + (2*g2^5*t^7.48)/(g1^9*g3^2*g4^2*g5^2) + (2*g3^5*t^7.48)/(g1^9*g2^2*g4^2*g5^2) + (g3^12*t^7.48)/(g1^9*g2^9*g4^2*g5^2) + (g2^5*g4^5*t^7.48)/(g1^9*g3^9*g5^2) + (2*g4^5*t^7.48)/(g1^9*g2^2*g3^2*g5^2) + (g3^5*g4^5*t^7.48)/(g1^9*g2^9*g5^2) + (g4^12*t^7.48)/(g1^9*g2^2*g3^9*g5^2) + (g4^12*t^7.48)/(g1^9*g2^9*g3^2*g5^2) + t^7.53/(g1^18*g2^4*g3^4*g4^18*g5^4) + t^7.53/(g1^18*g2^4*g3^11*g4^11*g5^4) + t^7.53/(g1^18*g2^11*g3^4*g4^11*g5^4) + t^7.53/(g1^18*g2^4*g3^18*g4^4*g5^4) + t^7.53/(g1^18*g2^11*g3^11*g4^4*g5^4) + t^7.53/(g1^18*g2^18*g3^4*g4^4*g5^4) - g1^7*g2^7*g3^7*g4^7*t^7.56 + g1^14*g5^14*t^7.57 - t^7.61/(g1^2*g2^2*g3^2*g4^2*g5^2) + g1*g2^8*g3*g4*g5^15*t^7.65 + g1*g2*g3^8*g4*g5^15*t^7.65 + g1*g2*g3*g4^8*g5^15*t^7.65 - (g2^5*t^7.67)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.67)/(g1^2*g2^2*g4^2*g5^9) - (g4^5*t^7.67)/(g1^2*g2^2*g3^2*g5^9) + g1*g2^15*g3*g4*g5^8*t^7.71 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.71 + g1*g2*g3^15*g4*g5^8*t^7.71 + 2*g1*g2^8*g3*g4^8*g5^8*t^7.71 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.71 + g1*g2*g3*g4^15*g5^8*t^7.71 + g1*g2^15*g3^8*g4*g5*t^7.77 + g1*g2^8*g3^15*g4*g5*t^7.77 + g1*g2^15*g3*g4^8*g5*t^7.77 + 2*g1*g2^8*g3^8*g4^8*g5*t^7.77 + g1*g2*g3^15*g4^8*g5*t^7.77 + g1*g2^8*g3*g4^15*g5*t^7.77 + g1*g2*g3^8*g4^15*g5*t^7.77 + g1^8*g2*g3*g4*g5^15*t^7.78 - (g1^5*t^7.8)/(g2^2*g3^2*g4^2*g5^9) + g1^8*g2^8*g3*g4*g5^8*t^7.84 + g1^8*g2*g3^8*g4*g5^8*t^7.84 + g1^8*g2*g3*g4^8*g5^8*t^7.84 + (2*g5^7*t^7.96)/(g1^14*g2^7) + (g2^7*g5^7*t^7.96)/(g1^14*g3^14) + (2*g5^7*t^7.96)/(g1^14*g3^7) + (g3^7*g5^7*t^7.96)/(g1^14*g2^14) + (g2^7*g5^7*t^7.96)/(g1^14*g4^14) + (g3^7*g5^7*t^7.96)/(g1^14*g4^14) + (2*g5^7*t^7.96)/(g1^14*g4^7) + (g2^7*g5^7*t^7.96)/(g1^14*g3^7*g4^7) + (g3^7*g5^7*t^7.96)/(g1^14*g2^7*g4^7) + (g4^7*g5^7*t^7.96)/(g1^14*g2^14) + (g4^7*g5^7*t^7.96)/(g1^14*g3^14) + (g4^7*g5^7*t^7.96)/(g1^14*g2^7*g3^7) + g1^15*g2*g3*g4*g5^8*t^7.97 + t^8.02/g1^14 + (g2^7*t^8.02)/(g1^14*g3^7) + (g3^7*t^8.02)/(g1^14*g2^7) + (g2^7*g3^7*t^8.02)/(g1^14*g4^14) + (g2^7*t^8.02)/(g1^14*g4^7) + (g3^7*t^8.02)/(g1^14*g4^7) + (g4^7*t^8.02)/(g1^14*g2^7) + (g2^7*g4^7*t^8.02)/(g1^14*g3^14) + (g4^7*t^8.02)/(g1^14*g3^7) + (g3^7*g4^7*t^8.02)/(g1^14*g2^14) - (g5^7*t^8.09)/(g1^7*g2^7*g3^7) - (g5^7*t^8.09)/(g1^7*g2^7*g4^7) - (g5^7*t^8.09)/(g1^7*g3^7*g4^7) - (6*t^8.15)/(g1^7*g2^7) - (g2^7*t^8.15)/(g1^7*g3^14) - (6*t^8.15)/(g1^7*g3^7) - (g3^7*t^8.15)/(g1^7*g2^14) - (g2^7*t^8.15)/(g1^7*g4^14) - (g3^7*t^8.15)/(g1^7*g4^14) - (6*t^8.15)/(g1^7*g4^7) - (2*g2^7*t^8.15)/(g1^7*g3^7*g4^7) - (2*g3^7*t^8.15)/(g1^7*g2^7*g4^7) - (g4^7*t^8.15)/(g1^7*g2^14) - (g4^7*t^8.15)/(g1^7*g3^14) - (2*g4^7*t^8.15)/(g1^7*g2^7*g3^7) - (2*t^8.21)/(g1^7*g5^7) - (g2^7*t^8.21)/(g1^7*g3^7*g5^7) - (g3^7*t^8.21)/(g1^7*g2^7*g5^7) - (g2^7*t^8.21)/(g1^7*g4^7*g5^7) - (g3^7*t^8.21)/(g1^7*g4^7*g5^7) - (g4^7*t^8.21)/(g1^7*g2^7*g5^7) - (g4^7*t^8.21)/(g1^7*g3^7*g5^7) - t^8.29/(g2^7*g3^7) - t^8.29/(g2^7*g4^7) - t^8.29/(g3^7*g4^7) + (g2*g3*g5^8*t^8.3)/(g1^13*g4^13) + (g2*g5^8*t^8.3)/(g1^13*g3^6*g4^6) + (g3*g5^8*t^8.3)/(g1^13*g2^6*g4^6) + (g2*g4*g5^8*t^8.3)/(g1^13*g3^13) + (g4*g5^8*t^8.3)/(g1^13*g2^6*g3^6) + (g3*g4*g5^8*t^8.3)/(g1^13*g2^13) + (g2^8*g3*g5*t^8.36)/(g1^13*g4^13) + (g2*g3^8*g5*t^8.36)/(g1^13*g4^13) + (g2^8*g5*t^8.36)/(g1^13*g3^6*g4^6) + (2*g2*g3*g5*t^8.36)/(g1^13*g4^6) + (g3^8*g5*t^8.36)/(g1^13*g2^6*g4^6) + (g2^8*g4*g5*t^8.36)/(g1^13*g3^13) + (2*g2*g4*g5*t^8.36)/(g1^13*g3^6) + (2*g3*g4*g5*t^8.36)/(g1^13*g2^6) + (g3^8*g4*g5*t^8.36)/(g1^13*g2^13) + (g2*g4^8*g5*t^8.36)/(g1^13*g3^13) + (g4^8*g5*t^8.36)/(g1^13*g2^6*g3^6) + (g3*g4^8*g5*t^8.36)/(g1^13*g2^13) - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.38 + t^8.41/g5^14 + (g5^8*t^8.43)/(g1^6*g2^6*g3^6*g4^6) - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.44 - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.44 - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.44 + (g2^8*t^8.55)/(g1^6*g3^6*g4^6*g5^6) + (g3^8*t^8.55)/(g1^6*g2^6*g4^6*g5^6) + (g4^8*t^8.55)/(g1^6*g2^6*g3^6*g5^6) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.57 + t^8.6/(g1^15*g2^8*g3^8*g4^15*g5^8) + t^8.6/(g1^15*g2^8*g3^15*g4^8*g5^8) + t^8.6/(g1^15*g2^15*g3^8*g4^8*g5^8) + t^8.61/(g1^28*g2^28) + t^8.61/(g1^28*g3^28) + t^8.61/(g1^28*g2^7*g3^21) + t^8.61/(g1^28*g2^14*g3^14) + t^8.61/(g1^28*g2^21*g3^7) + t^8.61/(g1^28*g4^28) + t^8.61/(g1^28*g2^7*g4^21) + t^8.61/(g1^28*g3^7*g4^21) + t^8.61/(g1^28*g2^14*g4^14) + t^8.61/(g1^28*g3^14*g4^14) + t^8.61/(g1^28*g2^7*g3^7*g4^14) + t^8.61/(g1^28*g2^21*g4^7) + t^8.61/(g1^28*g3^21*g4^7) + t^8.61/(g1^28*g2^7*g3^14*g4^7) + t^8.61/(g1^28*g2^14*g3^7*g4^7) + (g1*g5*t^8.62)/(g2^6*g3^6*g4^6) + (g1*g2*t^8.68)/(g3^6*g4^6*g5^6) + (g1*g3*t^8.68)/(g2^6*g4^6*g5^6) + (g1*g4*t^8.68)/(g2^6*g3^6*g5^6) - g1^4*g2^4*g3^4*g4^4*g5^4*t^8.78 + (g1^8*t^8.81)/(g2^6*g3^6*g4^6*g5^6) + (g2^5*g5^19*t^8.86)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.86)/(g1^2*g2^2*g4^2) + (g4^5*g5^19*t^8.86)/(g1^2*g2^2*g3^2) + (g2^12*g5^12*t^8.92)/(g1^2*g3^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.92)/(g1^2*g4^2) + (g3^12*g5^12*t^8.92)/(g1^2*g2^2*g4^2) + (2*g2^5*g4^5*g5^12*t^8.92)/(g1^2*g3^2) + (2*g3^5*g4^5*g5^12*t^8.92)/(g1^2*g2^2) + (g4^12*g5^12*t^8.92)/(g1^2*g2^2*g3^2) + (g2^19*g5^5*t^8.98)/(g1^2*g3^2*g4^2) + (2*g2^12*g3^5*g5^5*t^8.98)/(g1^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.98)/(g1^2*g4^2) + (g3^19*g5^5*t^8.98)/(g1^2*g2^2*g4^2) + (2*g2^12*g4^5*g5^5*t^8.98)/(g1^2*g3^2) + (3*g2^5*g3^5*g4^5*g5^5*t^8.98)/g1^2 + (2*g3^12*g4^5*g5^5*t^8.98)/(g1^2*g2^2) + (2*g2^5*g4^12*g5^5*t^8.98)/(g1^2*g3^2) + (2*g3^5*g4^12*g5^5*t^8.98)/(g1^2*g2^2) + (g4^19*g5^5*t^8.98)/(g1^2*g2^2*g3^2) + (g1^5*g5^19*t^8.99)/(g2^2*g3^2*g4^2) - t^4.61/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.77/(g1^9*g2^2*g3^2*g4^9*g5^2*y) - t^6.77/(g1^9*g2^2*g3^9*g4^2*g5^2*y) - t^6.77/(g1^9*g2^9*g3^2*g4^2*g5^2*y) + t^7.31/(g1^14*g2^7*g3^7*y) + t^7.31/(g1^14*g2^7*g4^7*y) + t^7.31/(g1^14*g3^7*g4^7*y) + (g1^2*g2^2*g3^2*g4^2*g5^2*t^7.39)/y - t^7.84/(g1^6*g2^6*g3^6*g4^6*g5^6*y) + t^8.38/(g1^11*g2^4*g3^4*g4^11*g5^4*y) + t^8.38/(g1^11*g2^4*g3^11*g4^4*g5^4*y) + t^8.38/(g1^11*g2^11*g3^4*g4^4*g5^4*y) + (g1^5*g2^5*t^8.46)/(g3^2*g4^2*g5^2*y) + (g1^5*g3^5*t^8.46)/(g2^2*g4^2*g5^2*y) + (g1^5*g4^5*t^8.46)/(g2^2*g3^2*g5^2*y) + (3*g5^7*t^8.81)/(g1^7*y) + (g2^7*g5^7*t^8.81)/(g1^7*g3^7*y) + (g3^7*g5^7*t^8.81)/(g1^7*g2^7*y) + (g2^7*g5^7*t^8.81)/(g1^7*g4^7*y) + (g3^7*g5^7*t^8.81)/(g1^7*g4^7*y) + (g4^7*g5^7*t^8.81)/(g1^7*g2^7*y) + (g4^7*g5^7*t^8.81)/(g1^7*g3^7*y) + (2*g2^7*t^8.87)/(g1^7*y) + (2*g3^7*t^8.87)/(g1^7*y) + (g2^7*g3^7*t^8.87)/(g1^7*g4^7*y) + (2*g4^7*t^8.87)/(g1^7*y) + (g2^7*g4^7*t^8.87)/(g1^7*g3^7*y) + (g3^7*g4^7*t^8.87)/(g1^7*g2^7*y) - t^8.92/(g1^16*g2^2*g3^2*g4^16*g5^2*y) - t^8.92/(g1^16*g2^2*g3^9*g4^9*g5^2*y) - t^8.92/(g1^16*g2^9*g3^2*g4^9*g5^2*y) - t^8.92/(g1^16*g2^2*g3^16*g4^2*g5^2*y) - t^8.92/(g1^16*g2^9*g3^9*g4^2*g5^2*y) - t^8.92/(g1^16*g2^16*g3^2*g4^2*g5^2*y) + (g5^7*t^8.94)/(g2^7*y) + (g5^7*t^8.94)/(g3^7*y) + (g5^7*t^8.94)/(g4^7*y) - (t^4.61*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.77*y)/(g1^9*g2^2*g3^2*g4^9*g5^2) - (t^6.77*y)/(g1^9*g2^2*g3^9*g4^2*g5^2) - (t^6.77*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + (t^7.31*y)/(g1^14*g2^7*g3^7) + (t^7.31*y)/(g1^14*g2^7*g4^7) + (t^7.31*y)/(g1^14*g3^7*g4^7) + g1^2*g2^2*g3^2*g4^2*g5^2*t^7.39*y - (t^7.84*y)/(g1^6*g2^6*g3^6*g4^6*g5^6) + (t^8.38*y)/(g1^11*g2^4*g3^4*g4^11*g5^4) + (t^8.38*y)/(g1^11*g2^4*g3^11*g4^4*g5^4) + (t^8.38*y)/(g1^11*g2^11*g3^4*g4^4*g5^4) + (g1^5*g2^5*t^8.46*y)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^8.46*y)/(g2^2*g4^2*g5^2) + (g1^5*g4^5*t^8.46*y)/(g2^2*g3^2*g5^2) + (3*g5^7*t^8.81*y)/g1^7 + (g2^7*g5^7*t^8.81*y)/(g1^7*g3^7) + (g3^7*g5^7*t^8.81*y)/(g1^7*g2^7) + (g2^7*g5^7*t^8.81*y)/(g1^7*g4^7) + (g3^7*g5^7*t^8.81*y)/(g1^7*g4^7) + (g4^7*g5^7*t^8.81*y)/(g1^7*g2^7) + (g4^7*g5^7*t^8.81*y)/(g1^7*g3^7) + (2*g2^7*t^8.87*y)/g1^7 + (2*g3^7*t^8.87*y)/g1^7 + (g2^7*g3^7*t^8.87*y)/(g1^7*g4^7) + (2*g4^7*t^8.87*y)/g1^7 + (g2^7*g4^7*t^8.87*y)/(g1^7*g3^7) + (g3^7*g4^7*t^8.87*y)/(g1^7*g2^7) - (t^8.92*y)/(g1^16*g2^2*g3^2*g4^16*g5^2) - (t^8.92*y)/(g1^16*g2^2*g3^9*g4^9*g5^2) - (t^8.92*y)/(g1^16*g2^9*g3^2*g4^9*g5^2) - (t^8.92*y)/(g1^16*g2^2*g3^16*g4^2*g5^2) - (t^8.92*y)/(g1^16*g2^9*g3^9*g4^2*g5^2) - (t^8.92*y)/(g1^16*g2^16*g3^2*g4^2*g5^2) + (g5^7*t^8.94*y)/g2^7 + (g5^7*t^8.94*y)/g3^7 + (g5^7*t^8.94*y)/g4^7 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55689 | SU2adj1nf3 | $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ | 0.8908 | 1.0945 | 0.8139 | [X:[], M:[0.7257, 0.7257], q:[0.7289, 0.6495, 0.6248], qb:[0.6248, 0.6016, 0.6016], phi:[0.5422]] | 2*t^2.18 + t^3.25 + t^3.61 + 4*t^3.68 + 3*t^3.75 + 2*t^3.99 + 2*t^4.06 + t^4.14 + 3*t^4.35 + 3*t^5.24 + 4*t^5.31 + 5*t^5.38 + 2*t^5.43 + 2*t^5.45 + t^5.52 + 2*t^5.79 + 6*t^5.86 - 9*t^6. - t^4.63/y - t^4.63*y | detail |