Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55727 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}q_{3}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ | 0.8188 | 1.0013 | 0.8177 | [M:[0.951, 0.7515], q:[0.7142, 0.7613, 0.7377], qb:[0.7377, 0.4873, 0.4637], phi:[0.5245]] | [M:[[0, 0, 2, 2], [-1, 0, -2, 0]], q:[[-1, 0, 1, 1], [1, 0, 0, 0], [0, -1, 1, 1]], qb:[[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]], phi:[[0, 0, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }q_{1}q_{2}$, ${ }q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}q_{3}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}^{2}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\tilde{q}_{2}^{2}\tilde{q}_{3}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{2}q_{3}\tilde{q}_{3}$ | ${}$ | -4 | t^2.254 + 2*t^2.853 + t^3.534 + 3*t^3.604 + 3*t^3.675 + 3*t^4.356 + 3*t^4.426 + 3*t^4.497 + t^4.509 + 2*t^5.107 + 3*t^5.706 + t^5.788 + 3*t^5.859 - 4*t^6. - 3*t^6.071 + 2*t^6.387 + 6*t^6.457 + 6*t^6.528 + 3*t^6.61 + t^6.681 - 3*t^6.751 + t^6.763 - 6*t^6.822 - 2*t^6.893 + t^7.068 + 3*t^7.138 + 12*t^7.209 + 12*t^7.279 + 9*t^7.35 + 2*t^7.362 - 3*t^7.503 - 3*t^7.574 - 3*t^7.644 + 3*t^7.89 + 12*t^7.96 + 12*t^8.031 + t^8.043 + 9*t^8.101 + 3*t^8.113 + 6*t^8.172 - 4*t^8.254 - 3*t^8.325 + 4*t^8.559 + 2*t^8.641 + 9*t^8.712 + 3*t^8.782 - 6*t^8.853 + 3*t^8.865 - 3*t^8.924 + t^8.935 + 3*t^8.994 - t^4.574/y - t^6.828/y + (2*t^8.107)/y + t^8.319/y + t^8.706/y + t^8.788/y + (3*t^8.859)/y + (3*t^8.929)/y - t^4.574*y - t^6.828*y + 2*t^8.107*y + t^8.319*y + t^8.706*y + t^8.788*y + 3*t^8.859*y + 3*t^8.929*y | t^2.254/(g1*g3^2) + 2*g3^2*g4^2*t^2.853 + (g3*g4^3*t^3.534)/g1 + (g3^3*g4*t^3.604)/g1 + g2*g4^2*t^3.604 + (g3*g4^3*t^3.604)/g2 + g2*g3^2*t^3.675 + (g3^3*g4*t^3.675)/g2 + g1*g4^2*t^3.675 + (g2*g3*g4*t^4.356)/g1 + (g3^2*g4^2*t^4.356)/(g1*g2) + (g4^3*t^4.356)/g3 + 3*g3*g4*t^4.426 + g1*g2*t^4.497 + (g3^3*t^4.497)/g4 + (g1*g3*g4*t^4.497)/g2 + t^4.509/(g1^2*g3^4) + (2*g4^2*t^5.107)/g1 + 3*g3^4*g4^4*t^5.706 + (g4^3*t^5.788)/(g1^2*g3) + (g3*g4*t^5.859)/g1^2 + (g2*g4^2*t^5.859)/(g1*g3^2) + (g4^3*t^5.859)/(g1*g2*g3) - 4*t^6. - (g1*t^6.071)/g2 - (g3^2*t^6.071)/g4^2 - (g1*g2*t^6.071)/(g3*g4) + (2*g3^3*g4^5*t^6.387)/g1 + (2*g3^5*g4^3*t^6.457)/g1 + 2*g2*g3^2*g4^4*t^6.457 + (2*g3^3*g4^5*t^6.457)/g2 + 2*g2*g3^4*g4^2*t^6.528 + (2*g3^5*g4^3*t^6.528)/g2 + 2*g1*g3^2*g4^4*t^6.528 + (g2*g4*t^6.61)/(g1^2*g3) + (g4^2*t^6.61)/(g1^2*g2) + (g4^3*t^6.61)/(g1*g3^3) + (g4*t^6.681)/(g1*g3) - (g2*t^6.751)/g3^2 - (g3*t^6.751)/(g1*g4) - (g4*t^6.751)/(g2*g3) + t^6.763/(g1^3*g3^6) - (2*g1*t^6.822)/g3^2 - (2*g2*t^6.822)/g4^2 - (2*g3*t^6.822)/(g2*g4) - (2*g1*t^6.893)/g4^2 + (g3^2*g4^6*t^7.068)/g1^2 + (g3^4*g4^4*t^7.138)/g1^2 + (g2*g3*g4^5*t^7.138)/g1 + (g3^2*g4^6*t^7.138)/(g1*g2) + (g3^6*g4^2*t^7.209)/g1^2 + (3*g2*g3^3*g4^3*t^7.209)/g1 + g2^2*g4^4*t^7.209 + (3*g3^4*g4^4*t^7.209)/(g1*g2) + 3*g3*g4^5*t^7.209 + (g3^2*g4^6*t^7.209)/g2^2 + (g2*g3^5*g4*t^7.279)/g1 + g2^2*g3^2*g4^2*t^7.279 + (g3^6*g4^2*t^7.279)/(g1*g2) + 6*g3^3*g4^3*t^7.279 + g1*g2*g4^4*t^7.279 + (g3^4*g4^4*t^7.279)/g2^2 + (g1*g3*g4^5*t^7.279)/g2 + g2^2*g3^4*t^7.35 + 2*g3^5*g4*t^7.35 + 2*g1*g2*g3^2*g4^2*t^7.35 + (g3^6*g4^2*t^7.35)/g2^2 + (2*g1*g3^3*g4^3*t^7.35)/g2 + g1^2*g4^4*t^7.35 + (2*g4^2*t^7.362)/(g1^2*g3^2) - t^7.503/(g1*g2) - (g2*t^7.503)/(g1*g3*g4) - (g4*t^7.503)/g3^3 - (3*t^7.574)/(g3*g4) - (g3*t^7.644)/g4^3 - (g1*g2*t^7.644)/(g3^2*g4^2) - (g1*t^7.644)/(g2*g3*g4) + (g2*g3^2*g4^4*t^7.89)/g1^2 + (g3^3*g4^5*t^7.89)/(g1^2*g2) + (g4^6*t^7.89)/g1 + (g2*g3^4*g4^2*t^7.96)/g1^2 + (g2^2*g3*g4^3*t^7.96)/g1 + (g3^5*g4^3*t^7.96)/(g1^2*g2) + (6*g3^2*g4^4*t^7.96)/g1 + (g2*g4^5*t^7.96)/g3 + (g3^3*g4^5*t^7.96)/(g1*g2^2) + (g4^6*t^7.96)/g2 + (g2^2*g3^3*g4*t^8.031)/g1 + (3*g3^4*g4^2*t^8.031)/g1 + 3*g2*g3*g4^3*t^8.031 + (g3^5*g4^3*t^8.031)/(g1*g2^2) + (3*g3^2*g4^4*t^8.031)/g2 + (g1*g4^5*t^8.031)/g3 + (g4^3*t^8.043)/(g1^3*g3^3) + (g3^6*t^8.101)/g1 + 2*g2*g3^3*g4*t^8.101 + g1*g2^2*g4^2*t^8.101 + (2*g3^4*g4^2*t^8.101)/g2 + 2*g1*g3*g4^3*t^8.101 + (g1*g3^2*g4^4*t^8.101)/g2^2 + (g4*t^8.113)/(g1^3*g3) + (g2*g4^2*t^8.113)/(g1^2*g3^4) + (g4^3*t^8.113)/(g1^2*g2*g3^3) + g1*g2^2*g3^2*t^8.172 + (g3^6*t^8.172)/g2 + (g2*g3^5*t^8.172)/g4 + g1^2*g2*g4^2*t^8.172 + (g1*g3^4*g4^2*t^8.172)/g2^2 + (g1^2*g3*g4^3*t^8.172)/g2 - (4*t^8.254)/(g1*g3^2) - t^8.325/(g2*g3^2) - t^8.325/(g1*g4^2) - (g2*t^8.325)/(g3^3*g4) + 4*g3^6*g4^6*t^8.559 + (2*g3*g4^5*t^8.641)/g1^2 + (g2^2*g3^2*g4^2*t^8.712)/g1^2 + (2*g3^3*g4^3*t^8.712)/g1^2 + (2*g2*g4^4*t^8.712)/g1 + (g3^4*g4^4*t^8.712)/(g1^2*g2^2) + (2*g3*g4^5*t^8.712)/(g1*g2) + (g4^6*t^8.712)/g3^2 + (g2*g3^2*g4^2*t^8.782)/g1 + (g3^3*g4^3*t^8.782)/(g1*g2) + g4^4*t^8.782 - 6*g3^2*g4^2*t^8.853 + (g2*g4*t^8.865)/(g1^3*g3^3) + (g4^2*t^8.865)/(g1^3*g2*g3^2) + (g4^3*t^8.865)/(g1^2*g3^5) - g3^4*t^8.924 - g1*g2*g3*g4*t^8.924 - (g1*g3^2*g4^2*t^8.924)/g2 + (g4*t^8.935)/(g1^2*g3^3) + g1^2*g2^2*t^8.994 + (g3^6*t^8.994)/g4^2 + (g1^2*g3^2*g4^2*t^8.994)/g2^2 - t^4.574/(g3*g4*y) - t^6.828/(g1*g3^3*g4*y) + (2*g4^2*t^8.107)/(g1*y) + (g1*g3*t^8.319)/(g4*y) + (g3^4*g4^4*t^8.706)/y + (g4^3*t^8.788)/(g1^2*g3*y) + (g3*g4*t^8.859)/(g1^2*y) + (g2*g4^2*t^8.859)/(g1*g3^2*y) + (g4^3*t^8.859)/(g1*g2*g3*y) + (g2*t^8.929)/(g1*y) + (g3*g4*t^8.929)/(g1*g2*y) + (g4^2*t^8.929)/(g3^2*y) - (t^4.574*y)/(g3*g4) - (t^6.828*y)/(g1*g3^3*g4) + (2*g4^2*t^8.107*y)/g1 + (g1*g3*t^8.319*y)/g4 + g3^4*g4^4*t^8.706*y + (g4^3*t^8.788*y)/(g1^2*g3) + (g3*g4*t^8.859*y)/g1^2 + (g2*g4^2*t^8.859*y)/(g1*g3^2) + (g4^3*t^8.859*y)/(g1*g2*g3) + (g2*t^8.929*y)/g1 + (g3*g4*t^8.929*y)/(g1*g2) + (g4^2*t^8.929*y)/g3^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55681 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}q_{3}\tilde{q}_{1}$ | 0.8008 | 0.9717 | 0.8242 | [M:[0.9333], q:[0.7333, 0.7333, 0.7333], qb:[0.7333, 0.4667, 0.4667], phi:[0.5333]] | 2*t^2.8 + 8*t^3.6 + 9*t^4.4 + 3*t^5.6 - 10*t^6. - t^4.6/y - t^4.6*y | detail | {a: 961/1200, c: 583/600, M1: 14/15, q1: 11/15, q2: 11/15, q3: 11/15, qb1: 11/15, qb2: 7/15, qb3: 7/15, phi1: 8/15} |