Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55715 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_1q_3\tilde{q}_3$ | 0.8771 | 1.0695 | 0.8201 | [X:[], M:[0.7853, 0.7533], q:[0.6233, 0.5913, 0.6233], qb:[0.7382, 0.7382, 0.5913], phi:[0.5235]] | [X:[], M:[[0, -3, -3, 0], [1, -6, -6, 1]], q:[[-1, 3, 3, 0], [1, 0, 0, 0], [0, 3, 3, -1]], qb:[[0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 1]], phi:[[0, -2, -2, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_1q_2$, $ \phi_1q_2q_3$, $ \phi_1q_1^2$, $ \phi_1q_1q_3$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_2\tilde{q}_3$ | . | -6 | t^2.26 + t^2.36 + t^3.14 + t^3.55 + 3*t^3.64 + 4*t^3.99 + 4*t^4.08 + t^4.43 + t^4.52 + t^4.62 + t^4.71 + 3*t^5.12 + 4*t^5.21 + 3*t^5.31 + t^5.4 + t^5.5 + t^5.81 - 6*t^6. - 4*t^6.1 + 4*t^6.25 + t^6.28 + 4*t^6.34 + 2*t^6.69 + t^6.78 + 4*t^6.79 + t^6.88 + t^6.97 + t^7.07 + t^7.1 + 3*t^7.19 + 5*t^7.29 + 3*t^7.38 + 3*t^7.47 + 4*t^7.54 + 12*t^7.63 + t^7.66 - t^7.67 + 8*t^7.73 + t^7.76 + t^7.85 + 7*t^7.98 + 12*t^8.07 + 6*t^8.17 - 3*t^8.26 - 2*t^8.36 + 2*t^8.45 + 4*t^8.51 + t^8.54 + 4*t^8.6 + t^8.64 + 3*t^8.67 + 9*t^8.76 + 6*t^8.86 + 7*t^8.95 - t^4.57/y - t^6.83/y - t^6.93/y + t^7.43/y + t^7.62/y - t^7.71/y + t^8.21/y + t^8.31/y + t^8.4/y + t^8.5/y + t^8.81/y + (4*t^8.9)/y - t^4.57*y - t^6.83*y - t^6.93*y + t^7.43*y + t^7.62*y - t^7.71*y + t^8.21*y + t^8.31*y + t^8.4*y + t^8.5*y + t^8.81*y + 4*t^8.9*y | (g1*g4*t^2.26)/(g2^6*g3^6) + t^2.36/(g2^3*g3^3) + t^3.14/(g2^4*g3^4) + g1*g4*t^3.55 + g2^3*g3^3*t^3.64 + (g1*g2^3*g3^3*t^3.64)/g4 + (g2^3*g3^3*g4*t^3.64)/g1 + g1*g2^2*t^3.99 + g1*g3^2*t^3.99 + g2^2*g4*t^3.99 + g3^2*g4*t^3.99 + (g2^5*g3^3*t^4.08)/g1 + (g2^3*g3^5*t^4.08)/g1 + (g2^5*g3^3*t^4.08)/g4 + (g2^3*g3^5*t^4.08)/g4 + g2^2*g3^2*t^4.43 + (g1^2*g4^2*t^4.52)/(g2^12*g3^12) + (g1*g4*t^4.62)/(g2^9*g3^9) + t^4.71/(g2^6*g3^6) + (g1^2*t^5.12)/(g2^2*g3^2) + (g1*g4*t^5.12)/(g2^2*g3^2) + (g4^2*t^5.12)/(g2^2*g3^2) + 2*g2*g3*t^5.21 + (g1*g2*g3*t^5.21)/g4 + (g2*g3*g4*t^5.21)/g1 + (g2^4*g3^4*t^5.31)/g1^2 + (g2^4*g3^4*t^5.31)/g4^2 + (g2^4*g3^4*t^5.31)/(g1*g4) + (g1*g4*t^5.4)/(g2^10*g3^10) + t^5.5/(g2^7*g3^7) + (g1^2*g4^2*t^5.81)/(g2^6*g3^6) - 4*t^6. - (g1*t^6.)/g4 - (g4*t^6.)/g1 - (g2^3*g3^3*t^6.1)/g1^2 - (g2^3*g3^3*t^6.1)/g4^2 - (2*g2^3*g3^3*t^6.1)/(g1*g4) + (g1^2*g4*t^6.25)/(g2^4*g3^6) + (g1^2*g4*t^6.25)/(g2^6*g3^4) + (g1*g4^2*t^6.25)/(g2^4*g3^6) + (g1*g4^2*t^6.25)/(g2^6*g3^4) + t^6.28/(g2^8*g3^8) + (g1*t^6.34)/(g2*g3^3) + (g1*t^6.34)/(g2^3*g3) + (g4*t^6.34)/(g2*g3^3) + (g4*t^6.34)/(g2^3*g3) + (2*g1*g4*t^6.69)/(g2^4*g3^4) + (g1^3*g4^3*t^6.78)/(g2^18*g3^18) + (2*t^6.79)/(g2*g3) + (g1*t^6.79)/(g2*g3*g4) + (g4*t^6.79)/(g1*g2*g3) + (g1^2*g4^2*t^6.88)/(g2^15*g3^15) + (g1*g4*t^6.97)/(g2^12*g3^12) + t^7.07/(g2^9*g3^9) + g1^2*g4^2*t^7.1 + g1^2*g2^3*g3^3*t^7.19 + g1*g2^3*g3^3*g4*t^7.19 + g2^3*g3^3*g4^2*t^7.19 + g2^6*g3^6*t^7.29 + (g1^2*g2^6*g3^6*t^7.29)/g4^2 + (g1*g2^6*g3^6*t^7.29)/g4 + (g2^6*g3^6*g4*t^7.29)/g1 + (g2^6*g3^6*g4^2*t^7.29)/g1^2 + (g1^3*g4*t^7.38)/(g2^8*g3^8) + (g1^2*g4^2*t^7.38)/(g2^8*g3^8) + (g1*g4^3*t^7.38)/(g2^8*g3^8) + (g1^2*t^7.47)/(g2^5*g3^5) + (g1*g4*t^7.47)/(g2^5*g3^5) + (g4^2*t^7.47)/(g2^5*g3^5) + g1^2*g2^2*g4*t^7.54 + g1^2*g3^2*g4*t^7.54 + g1*g2^2*g4^2*t^7.54 + g1*g3^2*g4^2*t^7.54 + 2*g1*g2^5*g3^3*t^7.63 + 2*g1*g2^3*g3^5*t^7.63 + (g1^2*g2^5*g3^3*t^7.63)/g4 + (g1^2*g2^3*g3^5*t^7.63)/g4 + 2*g2^5*g3^3*g4*t^7.63 + 2*g2^3*g3^5*g4*t^7.63 + (g2^5*g3^3*g4^2*t^7.63)/g1 + (g2^3*g3^5*g4^2*t^7.63)/g1 + (g1^2*g4^2*t^7.66)/(g2^16*g3^16) - (g2*g3*t^7.67)/(g1*g4) + (g2^8*g3^6*t^7.73)/g1 + (g2^6*g3^8*t^7.73)/g1 + (g1*g2^8*g3^6*t^7.73)/g4^2 + (g1*g2^6*g3^8*t^7.73)/g4^2 + (g2^8*g3^6*t^7.73)/g4 + (g2^6*g3^8*t^7.73)/g4 + (g2^8*g3^6*g4*t^7.73)/g1^2 + (g2^6*g3^8*g4*t^7.73)/g1^2 + (g1*g4*t^7.76)/(g2^13*g3^13) + t^7.85/(g2^10*g3^10) + g1^2*g2^4*t^7.98 + g1^2*g3^4*t^7.98 + g1*g2^4*g4*t^7.98 + g1*g2^2*g3^2*g4*t^7.98 + g1*g3^4*g4*t^7.98 + g2^4*g4^2*t^7.98 + g3^4*g4^2*t^7.98 + 2*g2^7*g3^3*t^8.07 + g2^5*g3^5*t^8.07 + 2*g2^3*g3^7*t^8.07 + (g1*g2^7*g3^3*t^8.07)/g4 + (g1*g2^5*g3^5*t^8.07)/g4 + (g1*g2^3*g3^7*t^8.07)/g4 + (g2^7*g3^3*g4*t^8.07)/g1 + (g2^5*g3^5*g4*t^8.07)/g1 + (g2^3*g3^7*g4*t^8.07)/g1 + (g1^3*g4^3*t^8.07)/(g2^12*g3^12) + (g2^10*g3^6*t^8.17)/g1^2 + (g2^6*g3^10*t^8.17)/g1^2 + (g2^10*g3^6*t^8.17)/g4^2 + (g2^6*g3^10*t^8.17)/g4^2 + (g2^10*g3^6*t^8.17)/(g1*g4) + (g2^6*g3^10*t^8.17)/(g1*g4) - (3*g1*g4*t^8.26)/(g2^6*g3^6) - (2*t^8.36)/(g2^3*g3^3) + t^8.45/g1^2 + t^8.45/g4^2 + (g1^3*g4^2*t^8.51)/(g2^10*g3^12) + (g1^3*g4^2*t^8.51)/(g2^12*g3^10) + (g1^2*g4^3*t^8.51)/(g2^10*g3^12) + (g1^2*g4^3*t^8.51)/(g2^12*g3^10) + (g1*g4*t^8.54)/(g2^14*g3^14) + (g1^2*g4*t^8.6)/(g2^7*g3^9) + (g1^2*g4*t^8.6)/(g2^9*g3^7) + (g1*g4^2*t^8.6)/(g2^7*g3^9) + (g1*g4^2*t^8.6)/(g2^9*g3^7) + t^8.64/(g2^11*g3^11) + (g1^3*g4*t^8.67)/(g2^2*g3^2) + (g1^2*g4^2*t^8.67)/(g2^2*g3^2) + (g1*g4^3*t^8.67)/(g2^2*g3^2) + 2*g1^2*g2*g3*t^8.76 + (g1^3*g2*g3*t^8.76)/g4 + 3*g1*g2*g3*g4*t^8.76 + 2*g2*g3*g4^2*t^8.76 + (g2*g3*g4^3*t^8.76)/g1 - g2^6*g3^2*t^8.86 + 2*g2^4*g3^4*t^8.86 - g2^2*g3^6*t^8.86 + (g1^2*g2^4*g3^4*t^8.86)/g4^2 + (2*g1*g2^4*g3^4*t^8.86)/g4 + (2*g2^4*g3^4*g4*t^8.86)/g1 + (g2^4*g3^4*g4^2*t^8.86)/g1^2 + (g2^7*g3^7*t^8.95)/g1^2 + (g1*g2^7*g3^7*t^8.95)/g4^3 + (g2^7*g3^7*t^8.95)/g4^2 + (g2^7*g3^7*t^8.95)/(g1*g4) + (g2^7*g3^7*g4*t^8.95)/g1^3 + (2*g1^2*g4^2*t^8.95)/(g2^10*g3^10) - t^4.57/(g2^2*g3^2*y) - (g1*g4*t^6.83)/(g2^8*g3^8*y) - t^6.93/(g2^5*g3^5*y) + (g2^2*g3^2*t^7.43)/y + (g1*g4*t^7.62)/(g2^9*g3^9*y) - t^7.71/(g2^6*g3^6*y) + (g2*g3*t^8.21)/y + (g2^4*g3^4*t^8.31)/(g1*g4*y) + (g1*g4*t^8.4)/(g2^10*g3^10*y) + t^8.5/(g2^7*g3^7*y) + (g1^2*g4^2*t^8.81)/(g2^6*g3^6*y) + (g1^2*t^8.9)/(g2^3*g3^3*y) + (2*g1*g4*t^8.9)/(g2^3*g3^3*y) + (g4^2*t^8.9)/(g2^3*g3^3*y) - (t^4.57*y)/(g2^2*g3^2) - (g1*g4*t^6.83*y)/(g2^8*g3^8) - (t^6.93*y)/(g2^5*g3^5) + g2^2*g3^2*t^7.43*y + (g1*g4*t^7.62*y)/(g2^9*g3^9) - (t^7.71*y)/(g2^6*g3^6) + g2*g3*t^8.21*y + (g2^4*g3^4*t^8.31*y)/(g1*g4) + (g1*g4*t^8.4*y)/(g2^10*g3^10) + (t^8.5*y)/(g2^7*g3^7) + (g1^2*g4^2*t^8.81*y)/(g2^6*g3^6) + (g1^2*t^8.9*y)/(g2^3*g3^3) + (2*g1*g4*t^8.9*y)/(g2^3*g3^3) + (g4^2*t^8.9*y)/(g2^3*g3^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55670 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ | 0.878 | 1.0728 | 0.8184 | [X:[], M:[0.7561, 0.7561], q:[0.639, 0.6049, 0.6049], qb:[0.737, 0.737, 0.5735], phi:[0.5259]] | 2*t^2.27 + t^3.16 + 2*t^3.54 + t^3.63 + t^3.64 + 2*t^3.93 + 4*t^4.03 + 2*t^4.13 + t^4.42 + 3*t^4.54 + t^5.02 + 2*t^5.11 + 3*t^5.21 + t^5.22 + 2*t^5.31 + t^5.41 + 2*t^5.42 + 3*t^5.8 - 7*t^6. - t^4.58/y - t^4.58*y | detail |