Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55699 SU2adj1nf3 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_3^2$ + $ \phi_1q_2\tilde{q}_1$ 0.8482 1.0323 0.8217 [X:[], M:[0.7045], q:[0.5605, 0.735, 0.735], qb:[0.735, 0.5605, 0.5538], phi:[0.5301]] [X:[], M:[[-7, -7, 0]], q:[[10, 3, -2], [-3, 4, 2], [2, 2, 1]], qb:[[7, 0, 0], [0, 7, 0], [0, 0, 7]], phi:[[-4, -4, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ q_1\tilde{q}_3$, $ q_1\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_3$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_1q_3$, $ M_1^2$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_1q_2$, $ M_1q_3\tilde{q}_3$ $\phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$ -3 t^2.11 + t^3.18 + 2*t^3.34 + t^3.36 + 3*t^3.87 + 5*t^3.89 + t^4.23 + 3*t^4.41 + t^4.91 + 2*t^4.93 + 3*t^4.95 + t^5.29 + 2*t^5.46 + t^5.48 + t^5.98 - 3*t^6. - 2*t^6.02 + t^6.34 + t^6.36 - t^6.52 - 2*t^6.54 + 3*t^6.69 + 2*t^6.71 + t^6.73 + t^7.03 + 2*t^7.05 + 2*t^7.07 + 6*t^7.21 + 10*t^7.23 + 5*t^7.25 + t^7.41 - 3*t^7.59 - 2*t^7.61 + 5*t^7.73 + 13*t^7.75 + 12*t^7.77 + 2*t^8.09 - t^8.11 + t^8.13 + 2*t^8.26 + 9*t^8.28 + 13*t^8.3 + 3*t^8.32 + t^8.45 + t^8.47 + 2*t^8.64 + t^8.68 + 3*t^8.78 + 8*t^8.8 + 9*t^8.82 + 10*t^8.84 - t^4.59/y - t^6.7/y + t^7.41/y - t^7.77/y + t^8.29/y + (2*t^8.46)/y + (2*t^8.48)/y - t^8.82/y + (3*t^8.98)/y - t^4.59*y - t^6.7*y + t^7.41*y - t^7.77*y + t^8.29*y + 2*t^8.46*y + 2*t^8.48*y - t^8.82*y + 3*t^8.98*y t^2.11/(g1^7*g2^7) + t^3.18/(g1^8*g2^8*g3^4) + g1^10*g2^3*g3^5*t^3.34 + g2^7*g3^7*t^3.34 + (g1^10*g2^10*t^3.36)/g3^2 + g1^7*g3^7*t^3.87 + g1^2*g2^2*g3^8*t^3.87 + (g2^4*g3^9*t^3.87)/g1^3 + g1^7*g2^7*t^3.89 + (g1^17*g2^3*t^3.89)/g3^2 + (g1^12*g2^5*t^3.89)/g3 + g1^2*g2^9*g3*t^3.89 + (g2^11*g3^2*t^3.89)/g1^3 + t^4.23/(g1^14*g2^14) + g1^9*g2^2*g3*t^4.41 + g1^4*g2^4*g3^2*t^4.41 + (g2^6*g3^3*t^4.41)/g1 + (g3^12*t^4.91)/(g1^4*g2^4) + (g1^6*g3^3*t^4.93)/g2 + (g2^3*g3^5*t^4.93)/g1^4 + (g1^16*g2^2*t^4.95)/g3^6 + (g1^6*g2^6*t^4.95)/g3^4 + (g2^10*t^4.95)/(g1^4*g3^2) + t^5.29/(g1^15*g2^15*g3^4) + (g1^3*g3^5*t^5.46)/g2^4 + (g3^7*t^5.46)/g1^7 + (g1^3*g2^3*t^5.48)/g3^2 + (g3^8*t^5.98)/(g1^5*g2^5) - 3*t^6. - (g1^10*g2^3*t^6.02)/g3^9 - (g2^7*t^6.02)/g3^7 + t^6.34/(g1^21*g2^21) + t^6.36/(g1^16*g2^16*g3^8) - (g1^7*t^6.52)/g2^7 + (g1^2*g3*t^6.52)/g2^5 - (g3^2*t^6.52)/(g1^3*g2^3) + (g3^3*t^6.52)/(g1^8*g2) - (g2*g3^4*t^6.52)/g1^13 - (g1^7*t^6.54)/g3^7 - (g2^4*t^6.54)/(g1^3*g3^5) + g1^20*g2^6*g3^10*t^6.69 + g1^10*g2^10*g3^12*t^6.69 + g2^14*g3^14*t^6.69 + g1^20*g2^13*g3^3*t^6.71 + g1^10*g2^17*g3^5*t^6.71 + (g1^20*g2^20*t^6.73)/g3^4 + (g3^12*t^7.03)/(g1^11*g2^11) + (g3^3*t^7.05)/(g1*g2^8) + (g3^5*t^7.05)/(g1^11*g2^4) + (g1^9*t^7.07)/(g2^5*g3^6) + (g2^3*t^7.07)/(g1^11*g3^2) + g1^17*g2^3*g3^12*t^7.21 + g1^12*g2^5*g3^13*t^7.21 + 2*g1^7*g2^7*g3^14*t^7.21 + g1^2*g2^9*g3^15*t^7.21 + (g2^11*g3^16*t^7.21)/g1^3 + g1^27*g2^6*g3^3*t^7.23 + g1^22*g2^8*g3^4*t^7.23 + 2*g1^17*g2^10*g3^5*t^7.23 + 2*g1^12*g2^12*g3^6*t^7.23 + 2*g1^7*g2^14*g3^7*t^7.23 + g1^2*g2^16*g3^8*t^7.23 + (g2^18*g3^9*t^7.23)/g1^3 + g1^7*g2^21*t^7.25 + (g1^27*g2^13*t^7.25)/g3^4 + (g1^22*g2^15*t^7.25)/g3^3 + (g1^17*g2^17*t^7.25)/g3^2 + (g1^12*g2^19*t^7.25)/g3 + t^7.41/(g1^22*g2^22*g3^4) - t^7.59/g1^14 - (g1^6*t^7.59)/(g2^8*g3^4) - t^7.59/(g1^4*g2^4*g3^2) - (g1^6*t^7.61)/(g2*g3^11) - (g2^3*t^7.61)/(g1^4*g3^9) + g1^14*g3^14*t^7.73 + g1^9*g2^2*g3^15*t^7.73 + g1^4*g2^4*g3^16*t^7.73 + (g2^6*g3^17*t^7.73)/g1 + (g2^8*g3^18*t^7.73)/g1^6 + g1^24*g2^3*g3^5*t^7.75 + 2*g1^19*g2^5*g3^6*t^7.75 + 2*g1^14*g2^7*g3^7*t^7.75 + 3*g1^9*g2^9*g3^8*t^7.75 + 2*g1^4*g2^11*g3^9*t^7.75 + (2*g2^13*g3^10*t^7.75)/g1 + (g2^15*g3^11*t^7.75)/g1^6 + 2*g1^14*g2^14*t^7.77 + (g1^34*g2^6*t^7.77)/g3^4 + (g1^29*g2^8*t^7.77)/g3^3 + (g1^24*g2^10*t^7.77)/g3^2 + (2*g1^19*g2^12*t^7.77)/g3 + 2*g1^9*g2^16*g3*t^7.77 + g1^4*g2^18*g3^2*t^7.77 + (g2^20*g3^3*t^7.77)/g1 + (g2^22*g3^4*t^7.77)/g1^6 + (2*g3^8*t^8.09)/(g1^12*g2^12) - (3*t^8.11)/(g1^7*g2^7) + t^8.11/(g1^2*g2^9*g3) + (g3*t^8.11)/(g1^12*g2^5) + (g1^8*t^8.13)/(g2^6*g3^10) - (g1^3*t^8.13)/(g2^4*g3^9) + t^8.13/(g1^2*g2^2*g3^8) - t^8.13/(g1^7*g3^7) + (g2^2*t^8.13)/(g1^12*g3^6) + (g1^6*g3^17*t^8.26)/g2 + (g2^3*g3^19*t^8.26)/g1^4 + 2*g1^16*g2^2*g3^8*t^8.28 + g1^11*g2^4*g3^9*t^8.28 + 3*g1^6*g2^6*g3^10*t^8.28 + g1*g2^8*g3^11*t^8.28 + (2*g2^10*g3^12*t^8.28)/g1^4 + g1^21*g2^7*t^8.3 + (2*g1^26*g2^5*t^8.3)/g3 + 3*g1^16*g2^9*g3*t^8.3 + g1^11*g2^11*g3^2*t^8.3 + 3*g1^6*g2^13*g3^3*t^8.3 + g1*g2^15*g3^4*t^8.3 + (2*g2^17*g3^5*t^8.3)/g1^4 + (g1^26*g2^12*t^8.32)/g3^8 + (g1^16*g2^16*t^8.32)/g3^6 + (g1^6*g2^20*t^8.32)/g3^4 + t^8.45/(g1^28*g2^28) + t^8.47/(g1^23*g2^23*g3^8) + (g3*t^8.64)/(g1^5*g2^12) + (g3^3*t^8.64)/(g1^15*g2^8) + t^8.68/g3^14 + (g1^3*g3^19*t^8.78)/g2^4 + (g3^20*t^8.78)/(g1^2*g2^2) + (g3^21*t^8.78)/g1^7 + (2*g1^13*g3^10*t^8.8)/g2 + g1^8*g2*g3^11*t^8.8 + 2*g1^3*g2^3*g3^12*t^8.8 + (g2^5*g3^13*t^8.8)/g1^2 + (2*g2^7*g3^14*t^8.8)/g1^7 + g1^23*g2^2*g3*t^8.82 + g1^18*g2^4*g3^2*t^8.82 + 2*g1^13*g2^6*g3^3*t^8.82 + g1^8*g2^8*g3^4*t^8.82 + 2*g1^3*g2^10*g3^5*t^8.82 + (g2^12*g3^6*t^8.82)/g1^2 + (g2^14*g3^7*t^8.82)/g1^7 + (g2^21*t^8.84)/g1^7 + (g1^33*g2^5*t^8.84)/g3^8 + (g1^28*g2^7*t^8.84)/g3^7 + (g1^23*g2^9*t^8.84)/g3^6 + (g1^18*g2^11*t^8.84)/g3^5 + (2*g1^13*g2^13*t^8.84)/g3^4 + (g1^8*g2^15*t^8.84)/g3^3 + (g1^3*g2^17*t^8.84)/g3^2 + (g2^19*t^8.84)/(g1^2*g3) - t^4.59/(g1^4*g2^4*g3^2*y) - t^6.7/(g1^11*g2^11*g3^2*y) + (g1^4*g2^4*g3^2*t^7.41)/y - t^7.77/(g1^12*g2^12*g3^6*y) + t^8.29/(g1^15*g2^15*g3^4*y) + (g1^3*g3^5*t^8.46)/(g2^4*y) + (g3^7*t^8.46)/(g1^7*y) + (2*g1^3*g2^3*t^8.48)/(g3^2*y) - t^8.82/(g1^18*g2^18*g3^2*y) + (g3^7*t^8.98)/(g2^7*y) + (g3^8*t^8.98)/(g1^5*g2^5*y) + (g3^9*t^8.98)/(g1^10*g2^3*y) - (t^4.59*y)/(g1^4*g2^4*g3^2) - (t^6.7*y)/(g1^11*g2^11*g3^2) + g1^4*g2^4*g3^2*t^7.41*y - (t^7.77*y)/(g1^12*g2^12*g3^6) + (t^8.29*y)/(g1^15*g2^15*g3^4) + (g1^3*g3^5*t^8.46*y)/g2^4 + (g3^7*t^8.46*y)/g1^7 + (2*g1^3*g2^3*t^8.48*y)/g3^2 - (t^8.82*y)/(g1^18*g2^18*g3^2) + (g3^7*t^8.98*y)/g2^7 + (g3^8*t^8.98*y)/(g1^5*g2^5) + (g3^9*t^8.98*y)/(g1^10*g2^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55657 SU2adj1nf3 $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_3^2$ 0.8708 1.0567 0.8241 [X:[], M:[0.7582], q:[0.6209, 0.6209, 0.7268], qb:[0.6209, 0.6209, 0.6039], phi:[0.5464]] t^2.27 + t^3.28 + 4*t^3.67 + 5*t^3.73 + t^3.99 + 4*t^4.04 + t^4.55 + t^5.26 + 4*t^5.31 + 10*t^5.36 + t^5.55 - 12*t^6. - t^4.64/y - t^4.64*y detail