Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55671 SU2adj1nf3 $\phi_1q_1q_2$ + $ q_2q_3$ + $ M_1\tilde{q}_1\tilde{q}_2$ 0.7247 0.8687 0.8342 [X:[], M:[0.7995], q:[0.5581, 1.0211, 0.9789], qb:[0.6003, 0.6003, 0.5581], phi:[0.4208]] [X:[], M:[[0, -3, -3, 0]], q:[[4, 1, 1, 1], [-3, 0, 0, 0], [3, 0, 0, 0]], qb:[[0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ q_1\tilde{q}_3$, $ q_1\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_3$, $ q_1q_3$, $ q_3\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ M_1^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ M_1q_1\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$ $\phi_1q_3\tilde{q}_1$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_3$, $ \phi_1^2\tilde{q}_2\tilde{q}_3$ -4 t^2.4 + t^2.52 + t^3.35 + 4*t^3.48 + 3*t^4.61 + 4*t^4.74 + t^4.8 + 3*t^4.86 + t^4.92 + t^5.05 + t^5.75 + t^5.87 - 4*t^6. - 4*t^6.13 + t^6.7 + 4*t^6.82 + 9*t^6.95 + 3*t^7.01 + 3*t^7.14 + t^7.2 + t^7.32 - t^7.39 + t^7.45 + t^7.57 + 3*t^7.96 + 9*t^8.09 + t^8.15 + 8*t^8.21 + t^8.27 + 5*t^8.34 - 4*t^8.4 - 4*t^8.52 - t^8.65 - t^4.26/y - t^6.66/y - t^6.79/y + t^7.74/y + t^7.86/y + t^7.92/y + t^8.75/y + (5*t^8.87)/y - t^4.26*y - t^6.66*y - t^6.79*y + t^7.74*y + t^7.86*y + t^7.92*y + t^8.75*y + 5*t^8.87*y t^2.4/(g2^3*g3^3) + t^2.52/(g1^2*g2^2*g3^2*g4^2) + g1^4*g2*g3*g4^4*t^3.35 + g1^4*g2^4*g3*g4*t^3.48 + g1^4*g2*g3^4*g4*t^3.48 + g2^3*g4^3*t^3.48 + g3^3*g4^3*t^3.48 + g1^7*g2*g3*g4*t^4.61 + g1^3*g4^3*t^4.61 + (g4^5*t^4.61)/(g1*g2*g3) + g1^3*g2^3*t^4.74 + g1^3*g3^3*t^4.74 + (g2^2*g4^2*t^4.74)/(g1*g3) + (g3^2*g4^2*t^4.74)/(g1*g2) + t^4.8/(g2^6*g3^6) + (g2^5*t^4.86)/(g1*g3*g4) + (g2^2*g3^2*t^4.86)/(g1*g4) + (g3^5*t^4.86)/(g1*g2*g4) + t^4.92/(g1^2*g2^5*g3^5*g4^2) + t^5.05/(g1^4*g2^4*g3^4*g4^4) + (g1^4*g4^4*t^5.75)/(g2^2*g3^2) + (g1^2*g4^2*t^5.87)/(g2*g3) - 4*t^6. - (g2^3*t^6.)/g3^3 - (g3^3*t^6.)/g2^3 - (g1^4*g2*g3*t^6.)/g4^2 + (g1^2*g2^2*t^6.)/(g3*g4) + (g1^2*g3^2*t^6.)/(g2*g4) + (g2*g4*t^6.)/(g1^2*g3^2) + (g3*g4*t^6.)/(g1^2*g2^2) - (g4^2*t^6.)/(g1^4*g2*g3) - (g2^3*t^6.13)/g4^3 - (g3^3*t^6.13)/g4^3 - (g2^2*t^6.13)/(g1^4*g3*g4) - (g3^2*t^6.13)/(g1^4*g2*g4) + g1^8*g2^2*g3^2*g4^8*t^6.7 + g1^8*g2^5*g3^2*g4^5*t^6.82 + g1^8*g2^2*g3^5*g4^5*t^6.82 + g1^4*g2^4*g3*g4^7*t^6.82 + g1^4*g2*g3^4*g4^7*t^6.82 + g1^8*g2^8*g3^2*g4^2*t^6.95 + g1^8*g2^5*g3^5*g4^2*t^6.95 + g1^8*g2^2*g3^8*g4^2*t^6.95 + g1^4*g2^7*g3*g4^4*t^6.95 + g1^4*g2^4*g3^4*g4^4*t^6.95 + g1^4*g2*g3^7*g4^4*t^6.95 + g2^6*g4^6*t^6.95 + g2^3*g3^3*g4^6*t^6.95 + g3^6*g4^6*t^6.95 + (g1^7*g4*t^7.01)/(g2^2*g3^2) + (g1^3*g4^3*t^7.01)/(g2^3*g3^3) + (g4^5*t^7.01)/(g1*g2^4*g3^4) + (g1^5*t^7.14)/(g2*g3*g4) + (g1*g4*t^7.14)/(g2^2*g3^2) + (g4^3*t^7.14)/(g1^3*g2^3*g3^3) + t^7.2/(g2^9*g3^9) + t^7.26/(g1^3*g2^3) + t^7.26/(g1^3*g3^3) - (g1^3*t^7.26)/g4^3 + (g1*g2*t^7.26)/(g3^2*g4^2) + (g1*g3*t^7.26)/(g2^2*g4^2) - (2*t^7.26)/(g1*g2*g3*g4) - (g4*t^7.26)/(g1^5*g2^2*g3^2) + t^7.32/(g1^2*g2^8*g3^8*g4^2) - (g2^2*t^7.39)/(g1*g3*g4^4) - (g3^2*t^7.39)/(g1*g2*g4^4) + t^7.39/(g1^3*g4^3) + (g2^3*t^7.39)/(g1^3*g3^3*g4^3) + (g3^3*t^7.39)/(g1^3*g2^3*g4^3) - (g2*t^7.39)/(g1^5*g3^2*g4^2) - (g3*t^7.39)/(g1^5*g2^2*g4^2) + t^7.45/(g1^4*g2^7*g3^7*g4^4) + t^7.57/(g1^6*g2^6*g3^6*g4^6) + g1^11*g2^2*g3^2*g4^5*t^7.96 + g1^7*g2*g3*g4^7*t^7.96 + g1^3*g4^9*t^7.96 + g1^11*g2^5*g3^2*g4^2*t^8.09 + g1^11*g2^2*g3^5*g4^2*t^8.09 - g1^9*g2^3*g3^3*g4^3*t^8.09 + 2*g1^7*g2^4*g3*g4^4*t^8.09 + 2*g1^7*g2*g3^4*g4^4*t^8.09 - g1^5*g2^2*g3^2*g4^5*t^8.09 + 2*g1^3*g2^3*g4^6*t^8.09 + 2*g1^3*g3^3*g4^6*t^8.09 - g1*g2*g3*g4^7*t^8.09 + (g2^2*g4^8*t^8.09)/(g1*g3) + (g3^2*g4^8*t^8.09)/(g1*g2) + (g1^4*g4^4*t^8.15)/(g2^5*g3^5) + g1^7*g2^7*g3*g4*t^8.21 + g1^7*g2^4*g3^4*g4*t^8.21 + g1^7*g2*g3^7*g4*t^8.21 - g1^5*g2^5*g3^2*g4^2*t^8.21 - g1^5*g2^2*g3^5*g4^2*t^8.21 + 2*g1^3*g2^6*g4^3*t^8.21 + 2*g1^3*g2^3*g3^3*g4^3*t^8.21 + 2*g1^3*g3^6*g4^3*t^8.21 - g1*g2^4*g3*g4^4*t^8.21 - g1*g2*g3^4*g4^4*t^8.21 + (g2^5*g4^5*t^8.21)/(g1*g3) + (g2^2*g3^2*g4^5*t^8.21)/g1 + (g3^5*g4^5*t^8.21)/(g1*g2) + (g1^2*g4^2*t^8.27)/(g2^4*g3^4) + g1^3*g2^9*t^8.34 + g1^3*g2^6*g3^3*t^8.34 + g1^3*g2^3*g3^6*t^8.34 + g1^3*g3^9*t^8.34 - g1*g2^7*g3*g4*t^8.34 - g1*g2^4*g3^4*g4*t^8.34 - g1*g2*g3^7*g4*t^8.34 + (g2^8*g4^2*t^8.34)/(g1*g3) + (g2^5*g3^2*g4^2*t^8.34)/g1 + (g2^2*g3^5*g4^2*t^8.34)/g1 + (g3^8*g4^2*t^8.34)/(g1*g2) - (2*t^8.4)/(g2^3*g3^3) - (g1^4*t^8.4)/(g2^2*g3^2*g4^2) - (g4^2*t^8.4)/(g1^4*g2^4*g3^4) - t^8.52/(g1^6*g2^3*g3^3) - (g1^2*t^8.52)/(g2*g3*g4^4) + t^8.52/(g2^3*g4^3) + t^8.52/(g3^3*g4^3) - (g2*t^8.52)/(g1^2*g3^5*g4^2) - (4*t^8.52)/(g1^2*g2^2*g3^2*g4^2) - (g3*t^8.52)/(g1^2*g2^5*g4^2) + t^8.52/(g1^4*g2*g3^4*g4) + t^8.52/(g1^4*g2^4*g3*g4) + t^8.65/g4^6 - (g2*t^8.65)/(g1^2*g3^2*g4^5) - (g3*t^8.65)/(g1^2*g2^2*g4^5) + t^8.65/(g1^4*g2*g3*g4^4) - t^8.65/(g1^6*g2^3*g4^3) - t^8.65/(g1^6*g3^3*g4^3) + t^8.65/(g1^8*g2^2*g3^2*g4^2) - t^4.26/(g1*g2*g3*g4*y) - t^6.66/(g1*g2^4*g3^4*g4*y) - t^6.79/(g1^3*g2^3*g3^3*g4^3*y) + (g1*g2*g3*g4*t^7.74)/y + (g2^2*g3^2*t^7.86)/(g1*g4*y) + t^7.92/(g1^2*g2^5*g3^5*g4^2*y) + (g1^4*g4^4*t^8.75)/(g2^2*g3^2*y) + (g1^4*g2*g4*t^8.87)/(g3^2*y) + (g1^4*g3*g4*t^8.87)/(g2^2*y) + (g1^2*g4^2*t^8.87)/(g2*g3*y) + (g4^3*t^8.87)/(g2^3*y) + (g4^3*t^8.87)/(g3^3*y) - (t^4.26*y)/(g1*g2*g3*g4) - (t^6.66*y)/(g1*g2^4*g3^4*g4) - (t^6.79*y)/(g1^3*g2^3*g3^3*g4^3) + g1*g2*g3*g4*t^7.74*y + (g2^2*g3^2*t^7.86*y)/(g1*g4) + (t^7.92*y)/(g1^2*g2^5*g3^5*g4^2) + (g1^4*g4^4*t^8.75*y)/(g2^2*g3^2) + (g1^4*g2*g4*t^8.87*y)/g3^2 + (g1^4*g3*g4*t^8.87*y)/g2^2 + (g1^2*g4^2*t^8.87*y)/(g2*g3) + (g4^3*t^8.87*y)/g2^3 + (g4^3*t^8.87*y)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55781 $\phi_1q_1q_2$ + $ q_2q_3$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_3$ 0.7382 0.8885 0.8308 [X:[], M:[0.8108, 0.8108], q:[0.5946, 1.0, 1.0], qb:[0.5946, 0.5946, 0.5946], phi:[0.4054]] 3*t^2.43 + 4*t^3.57 + 10*t^4.78 + 6*t^4.86 - 4*t^6. - t^4.22/y - t^4.22*y detail
55730 $\phi_1q_1q_2$ + $ q_2q_3$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1^4$ 0.694 0.8536 0.813 [X:[], M:[0.9459], q:[0.473, 1.027, 0.973], qb:[0.527, 0.527, 0.473], phi:[0.5]] 2*t^2.84 + 5*t^3. + 3*t^4.34 + 4*t^4.5 + 3*t^4.66 + 3*t^5.68 + 6*t^5.84 + 6*t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
40 SU2adj1nf2 $M_1q_1q_2$ 0.7247 0.8687 0.8342 [X:[], M:[0.7995], q:[0.6003, 0.6003], qb:[0.5581, 0.5581], phi:[0.4208]] t^2.4 + t^2.52 + t^3.35 + 4*t^3.48 + 3*t^4.61 + 4*t^4.74 + t^4.8 + 3*t^4.86 + t^4.92 + t^5.05 + t^5.75 + t^5.87 - 4*t^6. - t^4.26/y - t^4.26*y detail


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55448 SU2adj1nf3 $\phi_1q_1q_2$ + $ q_2q_3$ 0.7103 0.8462 0.8394 [X:[], M:[], q:[0.5651, 1.0, 1.0], qb:[0.5651, 0.5651, 0.5651], phi:[0.4349]] t^2.61 + 6*t^3.39 + 10*t^4.7 + t^5.22 - 10*t^6. - t^4.3/y - t^4.3*y detail