Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55666 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_4M_6$ | 0.6347 | 0.8261 | 0.7683 | [X:[], M:[1.0, 0.8737, 0.6711, 1.0632, 0.7342, 0.9368], q:[0.7658, 0.2342], qb:[0.5632, 0.5632], phi:[0.4684]] | [X:[], M:[[0], [-8], [-5], [4], [-1], [-4]], q:[[1], [-1]], qb:[[4], [4]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_5$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_2$, $ M_6$, $ \phi_1^2$, $ M_1$, $ \phi_1q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_5$, $ M_5^2$, $ \phi_1q_1q_2$, $ M_3q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_2M_3$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_2M_5$, $ M_3M_6$, $ M_3\phi_1^2$, $ M_1M_3$, $ M_5M_6$, $ M_5\phi_1^2$, $ M_1M_5$, $ M_6q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_6$, $ M_2\phi_1^2$, $ M_1M_2$, $ M_6^2$, $ M_6\phi_1^2$, $ \phi_1^4$, $ M_1M_6$, $ M_1\phi_1^2$, $ M_3\phi_1q_2\tilde{q}_2$ | $M_3q_1\tilde{q}_2$ | -3 | t^2.01 + t^2.2 + 2*t^2.39 + t^2.62 + 2*t^2.81 + t^3. + t^3.8 + t^3.99 + t^4.03 + t^4.22 + 3*t^4.41 + 2*t^4.59 + t^4.63 + 6*t^4.78 + 3*t^4.82 + 3*t^5.01 + 5*t^5.2 + t^5.24 + 2*t^5.39 + 2*t^5.43 + 4*t^5.62 + 2*t^5.81 - 3*t^6. + t^6.04 + 2*t^6.19 + t^6.23 + t^6.38 + 2*t^6.42 + 4*t^6.61 + t^6.65 + 7*t^6.8 + 3*t^6.84 + 3*t^6.99 + 4*t^7.03 + 8*t^7.18 + 7*t^7.22 + t^7.26 + 5*t^7.41 + 3*t^7.44 + 10*t^7.59 + 6*t^7.63 + 3*t^7.78 + 6*t^7.82 + t^7.86 - 2*t^7.97 + 4*t^8.01 + 3*t^8.05 + 5*t^8.24 - 9*t^8.39 + 7*t^8.43 + t^8.58 + 2*t^8.62 + t^8.66 + 2*t^8.77 - 3*t^8.81 + 3*t^8.85 - t^4.41/y - t^6.42/y - t^6.61/y - t^7.03/y + (2*t^7.41)/y + (3*t^7.59)/y + t^7.63/y + (2*t^7.78)/y + (3*t^7.82)/y + (5*t^8.01)/y + (6*t^8.2)/y + (3*t^8.39)/y + t^8.43/y + t^8.62/y + (2*t^8.81)/y - t^4.41*y - t^6.42*y - t^6.61*y - t^7.03*y + 2*t^7.41*y + 3*t^7.59*y + t^7.63*y + 2*t^7.78*y + 3*t^7.82*y + 5*t^8.01*y + 6*t^8.2*y + 3*t^8.39*y + t^8.43*y + t^8.62*y + 2*t^8.81*y | t^2.01/g1^5 + t^2.2/g1 + 2*g1^3*t^2.39 + t^2.62/g1^8 + (2*t^2.81)/g1^4 + t^3. + g1*t^3.8 + g1^5*t^3.99 + t^4.03/g1^10 + t^4.22/g1^6 + (3*t^4.41)/g1^2 + 2*g1^2*t^4.59 + t^4.63/g1^13 + 6*g1^6*t^4.78 + (3*t^4.82)/g1^9 + (3*t^5.01)/g1^5 + (5*t^5.2)/g1 + t^5.24/g1^16 + 2*g1^3*t^5.39 + (2*t^5.43)/g1^12 + (4*t^5.62)/g1^8 + (2*t^5.81)/g1^4 - 3*t^6. + t^6.04/g1^15 + 2*g1^4*t^6.19 + t^6.23/g1^11 + g1^8*t^6.38 + (2*t^6.42)/g1^7 + (4*t^6.61)/g1^3 + t^6.65/g1^18 + 7*g1*t^6.8 + (3*t^6.84)/g1^14 + 3*g1^5*t^6.99 + (4*t^7.03)/g1^10 + 8*g1^9*t^7.18 + (7*t^7.22)/g1^6 + t^7.26/g1^21 + (5*t^7.41)/g1^2 + (3*t^7.44)/g1^17 + 10*g1^2*t^7.59 + (6*t^7.63)/g1^13 + 3*g1^6*t^7.78 + (6*t^7.82)/g1^9 + t^7.86/g1^24 - 2*g1^10*t^7.97 + (4*t^8.01)/g1^5 + (3*t^8.05)/g1^20 + (5*t^8.24)/g1^16 - 9*g1^3*t^8.39 + (7*t^8.43)/g1^12 + g1^7*t^8.58 + (2*t^8.62)/g1^8 + t^8.66/g1^23 + 2*g1^11*t^8.77 - (3*t^8.81)/g1^4 + (3*t^8.85)/g1^19 - t^4.41/(g1^2*y) - t^6.42/(g1^7*y) - t^6.61/(g1^3*y) - t^7.03/(g1^10*y) + (2*t^7.41)/(g1^2*y) + (3*g1^2*t^7.59)/y + t^7.63/(g1^13*y) + (2*g1^6*t^7.78)/y + (3*t^7.82)/(g1^9*y) + (5*t^8.01)/(g1^5*y) + (6*t^8.2)/(g1*y) + (3*g1^3*t^8.39)/y + t^8.43/(g1^12*y) + t^8.62/(g1^8*y) + (2*t^8.81)/(g1^4*y) - (t^4.41*y)/g1^2 - (t^6.42*y)/g1^7 - (t^6.61*y)/g1^3 - (t^7.03*y)/g1^10 + (2*t^7.41*y)/g1^2 + 3*g1^2*t^7.59*y + (t^7.63*y)/g1^13 + 2*g1^6*t^7.78*y + (3*t^7.82*y)/g1^9 + (5*t^8.01*y)/g1^5 + (6*t^8.2*y)/g1 + 3*g1^3*t^8.39*y + (t^8.43*y)/g1^12 + (t^8.62*y)/g1^8 + (2*t^8.81*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47144 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ | 0.6296 | 0.8171 | 0.7705 | [X:[], M:[1.0, 0.9072, 0.692, 1.0464, 0.7384], q:[0.7616, 0.2384], qb:[0.5464, 0.5464], phi:[0.4768]] | t^2.08 + t^2.22 + 2*t^2.35 + t^2.72 + t^2.86 + t^3. + t^3.14 + t^3.78 + t^3.92 + t^4.15 + t^4.29 + 3*t^4.43 + 2*t^4.57 + 6*t^4.71 + t^4.8 + 2*t^4.94 + 2*t^5.08 + 4*t^5.22 + 3*t^5.35 + t^5.44 + 2*t^5.49 + t^5.58 + 2*t^5.72 + 2*t^5.86 - 2*t^6. - t^4.43/y - t^4.43*y | detail |