Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55660 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_2^2$ + $ M_7\phi_1\tilde{q}_1^2$ | 0.7264 | 0.9268 | 0.7838 | [X:[], M:[0.9847, 0.9847, 1.1179, 0.7795, 0.7795, 0.6769, 0.6769], q:[0.5743, 0.441], qb:[0.441, 0.7795], phi:[0.441]] | [X:[], M:[[1, -7], [-1, -11], [0, 4], [1, 3], [-1, -1], [2, 10], [-2, 2]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_6$, $ M_5$, $ M_4$, $ \phi_1^2$, $ M_2$, $ M_1$, $ M_3$, $ \phi_1q_2\tilde{q}_1$, $ M_7^2$, $ M_6M_7$, $ q_1\tilde{q}_2$, $ M_6^2$, $ M_5M_7$, $ M_4M_7$, $ \phi_1q_1q_2$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_6$, $ M_5^2$, $ M_7\phi_1^2$, $ M_4M_5$, $ M_4^2$, $ M_6\phi_1^2$, $ \phi_1q_1^2$, $ M_2M_7$, $ M_1M_7$, $ M_5\phi_1^2$, $ M_2M_6$, $ M_4\phi_1^2$, $ M_1M_6$, $ M_2M_5$, $ M_2M_4$, $ M_1M_5$, $ \phi_1^4$, $ M_1M_4$, $ M_3M_7$, $ M_3M_6$, $ M_3M_5$, $ M_3M_4$, $ M_2^2$, $ M_1M_2$, $ M_1^2$ | $M_6\phi_1q_2\tilde{q}_1$, $ M_7\phi_1q_2\tilde{q}_1$ | -2 | 2*t^2.03 + 2*t^2.34 + t^2.65 + 2*t^2.95 + t^3.35 + t^3.97 + 4*t^4.06 + 6*t^4.37 + 5*t^4.68 + t^4.77 + 6*t^4.98 + 5*t^5.29 + 2*t^5.38 + 2*t^5.69 + 3*t^5.91 - 2*t^6. + 6*t^6.09 + 2*t^6.31 + 10*t^6.4 + 13*t^6.71 + 2*t^6.8 + 14*t^7.02 + 2*t^7.11 + 11*t^7.32 + 4*t^7.42 + 6*t^7.63 + 4*t^7.72 + 7*t^7.94 - 5*t^8.03 + 9*t^8.12 + 6*t^8.25 - 6*t^8.34 + 14*t^8.43 - t^8.65 + 20*t^8.74 + 4*t^8.83 + 4*t^8.86 - 10*t^8.95 - t^4.32/y - (2*t^6.35)/y - (2*t^6.66)/y + t^7.06/y - (2*t^7.28)/y + (6*t^7.37)/y + (3*t^7.68)/y + (8*t^7.98)/y + (6*t^8.29)/y - t^8.38/y + (2*t^8.6)/y - (2*t^8.69)/y + t^8.91/y - t^4.32*y - 2*t^6.35*y - 2*t^6.66*y + t^7.06*y - 2*t^7.28*y + 6*t^7.37*y + 3*t^7.68*y + 8*t^7.98*y + 6*t^8.29*y - t^8.38*y + 2*t^8.6*y - 2*t^8.69*y + t^8.91*y | (g2^2*t^2.03)/g1^2 + g1^2*g2^10*t^2.03 + t^2.34/(g1*g2) + g1*g2^3*t^2.34 + t^2.65/g2^4 + t^2.95/(g1*g2^11) + (g1*t^2.95)/g2^7 + g2^4*t^3.35 + t^3.97/g2^6 + (g2^4*t^4.06)/g1^4 + 2*g2^12*t^4.06 + g1^4*g2^20*t^4.06 + (g2*t^4.37)/g1^3 + (2*g2^5*t^4.37)/g1 + 2*g1*g2^9*t^4.37 + g1^3*g2^13*t^4.37 + (2*t^4.68)/(g1^2*g2^2) + g2^2*t^4.68 + 2*g1^2*g2^6*t^4.68 + g2^20*t^4.77 + t^4.98/(g1^3*g2^9) + (2*t^4.98)/(g1*g2^5) + (2*g1*t^4.98)/g2 + g1^3*g2^3*t^4.98 + t^5.29/(g1^2*g2^12) + (3*t^5.29)/g2^8 + (g1^2*t^5.29)/g2^4 + (g2^6*t^5.38)/g1^2 + g1^2*g2^14*t^5.38 + (g2^3*t^5.69)/g1 + g1*g2^7*t^5.69 + t^5.91/(g1^2*g2^22) + t^5.91/g2^18 + (g1^2*t^5.91)/g2^14 - 2*t^6. + (g2^6*t^6.09)/g1^6 + (2*g2^14*t^6.09)/g1^2 + 2*g1^2*g2^22*t^6.09 + g1^6*g2^30*t^6.09 + t^6.31/(g1*g2^7) + (g1*t^6.31)/g2^3 + (g2^3*t^6.4)/g1^5 + (2*g2^7*t^6.4)/g1^3 + (2*g2^11*t^6.4)/g1 + 2*g1*g2^15*t^6.4 + 2*g1^3*g2^19*t^6.4 + g1^5*g2^23*t^6.4 + (2*t^6.71)/g1^4 + (2*g2^4*t^6.71)/g1^2 + 5*g2^8*t^6.71 + 2*g1^2*g2^12*t^6.71 + 2*g1^4*g2^16*t^6.71 + (g2^22*t^6.8)/g1^2 + g1^2*g2^30*t^6.8 + t^7.02/(g1^5*g2^7) + (3*t^7.02)/(g1^3*g2^3) + (3*g2*t^7.02)/g1 + 3*g1*g2^5*t^7.02 + 3*g1^3*g2^9*t^7.02 + g1^5*g2^13*t^7.02 + (g2^19*t^7.11)/g1 + g1*g2^23*t^7.11 + t^7.32/(g1^4*g2^10) + (3*t^7.32)/(g1^2*g2^6) + (3*t^7.32)/g2^2 + 3*g1^2*g2^2*t^7.32 + g1^4*g2^6*t^7.32 + (g2^8*t^7.42)/g1^4 + 2*g2^16*t^7.42 + g1^4*g2^24*t^7.42 + t^7.63/(g1^3*g2^13) + (2*t^7.63)/(g1*g2^9) + (2*g1*t^7.63)/g2^5 + (g1^3*t^7.63)/g2 + (g2^5*t^7.72)/g1^3 + (g2^9*t^7.72)/g1 + g1*g2^13*t^7.72 + g1^3*g2^17*t^7.72 + t^7.94/(g1^4*g2^20) + t^7.94/(g1^2*g2^16) + (3*t^7.94)/g2^12 + (g1^2*t^7.94)/g2^8 + (g1^4*t^7.94)/g2^4 - (2*g2^2*t^8.03)/g1^2 - g2^6*t^8.03 - 2*g1^2*g2^10*t^8.03 + (g2^8*t^8.12)/g1^8 + (2*g2^16*t^8.12)/g1^4 + 3*g2^24*t^8.12 + 2*g1^4*g2^32*t^8.12 + g1^8*g2^40*t^8.12 + t^8.25/(g1^3*g2^23) + (2*t^8.25)/(g1*g2^19) + (2*g1*t^8.25)/g2^15 + (g1^3*t^8.25)/g2^11 - (3*t^8.34)/(g1*g2) - 3*g1*g2^3*t^8.34 + (g2^5*t^8.43)/g1^7 + (2*g2^9*t^8.43)/g1^5 + (2*g2^13*t^8.43)/g1^3 + (2*g2^17*t^8.43)/g1 + 2*g1*g2^21*t^8.43 + 2*g1^3*g2^25*t^8.43 + 2*g1^5*g2^29*t^8.43 + g1^7*g2^33*t^8.43 - t^8.65/g2^4 + (2*g2^2*t^8.74)/g1^6 + (2*g2^6*t^8.74)/g1^4 + (5*g2^10*t^8.74)/g1^2 + 2*g2^14*t^8.74 + 5*g1^2*g2^18*t^8.74 + 2*g1^4*g2^22*t^8.74 + 2*g1^6*g2^26*t^8.74 + (g2^24*t^8.83)/g1^4 + 2*g2^32*t^8.83 + g1^4*g2^40*t^8.83 + t^8.86/(g1^3*g2^33) + t^8.86/(g1*g2^29) + (g1*t^8.86)/g2^25 + (g1^3*t^8.86)/g2^21 - t^8.95/(g1^3*g2^15) - (4*t^8.95)/(g1*g2^11) - (4*g1*t^8.95)/g2^7 - (g1^3*t^8.95)/g2^3 - t^4.32/(g2^2*y) - t^6.35/(g1^2*y) - (g1^2*g2^8*t^6.35)/y - t^6.66/(g1*g2^3*y) - (g1*g2*t^6.66)/y + (g2^12*t^7.06)/y - t^7.28/(g1*g2^13*y) - (g1*t^7.28)/(g2^9*y) + (g2*t^7.37)/(g1^3*y) + (2*g2^5*t^7.37)/(g1*y) + (2*g1*g2^9*t^7.37)/y + (g1^3*g2^13*t^7.37)/y + t^7.68/(g1^2*g2^2*y) + (g2^2*t^7.68)/y + (g1^2*g2^6*t^7.68)/y + t^7.98/(g1^3*g2^9*y) + (3*t^7.98)/(g1*g2^5*y) + (3*g1*t^7.98)/(g2*y) + (g1^3*g2^3*t^7.98)/y + (2*t^8.29)/(g1^2*g2^12*y) + (2*t^8.29)/(g2^8*y) + (2*g1^2*t^8.29)/(g2^4*y) - (g2^2*t^8.38)/(g1^4*y) + (g2^6*t^8.38)/(g1^2*y) - (g2^10*t^8.38)/y + (g1^2*g2^14*t^8.38)/y - (g1^4*g2^18*t^8.38)/y + t^8.6/(g1*g2^15*y) + (g1*t^8.6)/(g2^11*y) - t^8.69/(g1^3*g2*y) - (g1^3*g2^11*t^8.69)/y + t^8.91/(g2^18*y) - (t^4.32*y)/g2^2 - (t^6.35*y)/g1^2 - g1^2*g2^8*t^6.35*y - (t^6.66*y)/(g1*g2^3) - g1*g2*t^6.66*y + g2^12*t^7.06*y - (t^7.28*y)/(g1*g2^13) - (g1*t^7.28*y)/g2^9 + (g2*t^7.37*y)/g1^3 + (2*g2^5*t^7.37*y)/g1 + 2*g1*g2^9*t^7.37*y + g1^3*g2^13*t^7.37*y + (t^7.68*y)/(g1^2*g2^2) + g2^2*t^7.68*y + g1^2*g2^6*t^7.68*y + (t^7.98*y)/(g1^3*g2^9) + (3*t^7.98*y)/(g1*g2^5) + (3*g1*t^7.98*y)/g2 + g1^3*g2^3*t^7.98*y + (2*t^8.29*y)/(g1^2*g2^12) + (2*t^8.29*y)/g2^8 + (2*g1^2*t^8.29*y)/g2^4 - (g2^2*t^8.38*y)/g1^4 + (g2^6*t^8.38*y)/g1^2 - g2^10*t^8.38*y + g1^2*g2^14*t^8.38*y - g1^4*g2^18*t^8.38*y + (t^8.6*y)/(g1*g2^15) + (g1*t^8.6*y)/g2^11 - (t^8.69*y)/(g1^3*g2) - g1^3*g2^11*t^8.69*y + (t^8.91*y)/g2^18 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47146 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_2^2$ | 0.7056 | 0.886 | 0.7965 | [X:[], M:[0.9809, 0.9847, 1.1188, 0.7778, 0.7816, 0.6744], q:[0.5766, 0.4425], qb:[0.4387, 0.7797], phi:[0.4406]] | t^2.02 + t^2.33 + t^2.34 + t^2.64 + t^2.94 + t^2.95 + t^3.36 + t^3.95 + t^3.97 + t^4.05 + t^4.07 + t^4.36 + 2*t^4.37 + t^4.38 + 2*t^4.67 + t^4.68 + t^4.69 + t^4.78 + t^4.97 + 2*t^4.98 + t^4.99 + t^5.28 + 3*t^5.29 + t^5.3 + t^5.38 + t^5.69 + t^5.7 + t^5.89 + t^5.9 + t^5.91 + t^5.98 - 2*t^6. - t^4.32/y - t^4.32*y | detail |