Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55660 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ 0.7264 0.9268 0.7838 [M:[0.9847, 0.9847, 1.1179, 0.7795, 0.7795, 0.6769, 0.6769], q:[0.5743, 0.441], qb:[0.441, 0.7795], phi:[0.441]] [M:[[1, -7], [-1, -11], [0, 4], [1, 3], [-1, -1], [2, 10], [-2, 2]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{7}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{1}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{7}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{4}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$ ${}M_{6}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{1}$ -2 2*t^2.031 + 2*t^2.338 + t^2.646 + 2*t^2.954 + t^3.354 + t^3.969 + 4*t^4.061 + 6*t^4.369 + 5*t^4.677 + t^4.769 + 6*t^4.985 + 5*t^5.292 + 2*t^5.384 + 2*t^5.692 + 3*t^5.908 - 2*t^6. + 6*t^6.092 + 2*t^6.308 + 10*t^6.4 + 13*t^6.708 + 2*t^6.8 + 14*t^7.015 + 2*t^7.107 + 11*t^7.323 + 4*t^7.415 + 6*t^7.631 + 4*t^7.723 + 7*t^7.939 - 5*t^8.031 + 9*t^8.123 + 6*t^8.246 - 6*t^8.338 + 14*t^8.431 - t^8.646 + 20*t^8.738 + 4*t^8.83 + 4*t^8.862 - 10*t^8.954 - t^4.323/y - (2*t^6.354)/y - (2*t^6.662)/y + t^7.061/y - (2*t^7.277)/y + (6*t^7.369)/y + (3*t^7.677)/y + (8*t^7.985)/y + (6*t^8.292)/y - t^8.384/y + (2*t^8.6)/y - (2*t^8.692)/y + t^8.908/y - t^4.323*y - 2*t^6.354*y - 2*t^6.662*y + t^7.061*y - 2*t^7.277*y + 6*t^7.369*y + 3*t^7.677*y + 8*t^7.985*y + 6*t^8.292*y - t^8.384*y + 2*t^8.6*y - 2*t^8.692*y + t^8.908*y (g2^2*t^2.031)/g1^2 + g1^2*g2^10*t^2.031 + t^2.338/(g1*g2) + g1*g2^3*t^2.338 + t^2.646/g2^4 + t^2.954/(g1*g2^11) + (g1*t^2.954)/g2^7 + g2^4*t^3.354 + t^3.969/g2^6 + (g2^4*t^4.061)/g1^4 + 2*g2^12*t^4.061 + g1^4*g2^20*t^4.061 + (g2*t^4.369)/g1^3 + (2*g2^5*t^4.369)/g1 + 2*g1*g2^9*t^4.369 + g1^3*g2^13*t^4.369 + (2*t^4.677)/(g1^2*g2^2) + g2^2*t^4.677 + 2*g1^2*g2^6*t^4.677 + g2^20*t^4.769 + t^4.985/(g1^3*g2^9) + (2*t^4.985)/(g1*g2^5) + (2*g1*t^4.985)/g2 + g1^3*g2^3*t^4.985 + t^5.292/(g1^2*g2^12) + (3*t^5.292)/g2^8 + (g1^2*t^5.292)/g2^4 + (g2^6*t^5.384)/g1^2 + g1^2*g2^14*t^5.384 + (g2^3*t^5.692)/g1 + g1*g2^7*t^5.692 + t^5.908/(g1^2*g2^22) + t^5.908/g2^18 + (g1^2*t^5.908)/g2^14 - 2*t^6. + (g2^6*t^6.092)/g1^6 + (2*g2^14*t^6.092)/g1^2 + 2*g1^2*g2^22*t^6.092 + g1^6*g2^30*t^6.092 + t^6.308/(g1*g2^7) + (g1*t^6.308)/g2^3 + (g2^3*t^6.4)/g1^5 + (2*g2^7*t^6.4)/g1^3 + (2*g2^11*t^6.4)/g1 + 2*g1*g2^15*t^6.4 + 2*g1^3*g2^19*t^6.4 + g1^5*g2^23*t^6.4 + (2*t^6.708)/g1^4 + (2*g2^4*t^6.708)/g1^2 + 5*g2^8*t^6.708 + 2*g1^2*g2^12*t^6.708 + 2*g1^4*g2^16*t^6.708 + (g2^22*t^6.8)/g1^2 + g1^2*g2^30*t^6.8 + t^7.015/(g1^5*g2^7) + (3*t^7.015)/(g1^3*g2^3) + (3*g2*t^7.015)/g1 + 3*g1*g2^5*t^7.015 + 3*g1^3*g2^9*t^7.015 + g1^5*g2^13*t^7.015 + (g2^19*t^7.107)/g1 + g1*g2^23*t^7.107 + t^7.323/(g1^4*g2^10) + (3*t^7.323)/(g1^2*g2^6) + (3*t^7.323)/g2^2 + 3*g1^2*g2^2*t^7.323 + g1^4*g2^6*t^7.323 + (g2^8*t^7.415)/g1^4 + 2*g2^16*t^7.415 + g1^4*g2^24*t^7.415 + t^7.631/(g1^3*g2^13) + (2*t^7.631)/(g1*g2^9) + (2*g1*t^7.631)/g2^5 + (g1^3*t^7.631)/g2 + (g2^5*t^7.723)/g1^3 + (g2^9*t^7.723)/g1 + g1*g2^13*t^7.723 + g1^3*g2^17*t^7.723 + t^7.939/(g1^4*g2^20) + t^7.939/(g1^2*g2^16) + (3*t^7.939)/g2^12 + (g1^2*t^7.939)/g2^8 + (g1^4*t^7.939)/g2^4 - (2*g2^2*t^8.031)/g1^2 - g2^6*t^8.031 - 2*g1^2*g2^10*t^8.031 + (g2^8*t^8.123)/g1^8 + (2*g2^16*t^8.123)/g1^4 + 3*g2^24*t^8.123 + 2*g1^4*g2^32*t^8.123 + g1^8*g2^40*t^8.123 + t^8.246/(g1^3*g2^23) + (2*t^8.246)/(g1*g2^19) + (2*g1*t^8.246)/g2^15 + (g1^3*t^8.246)/g2^11 - (3*t^8.338)/(g1*g2) - 3*g1*g2^3*t^8.338 + (g2^5*t^8.431)/g1^7 + (2*g2^9*t^8.431)/g1^5 + (2*g2^13*t^8.431)/g1^3 + (2*g2^17*t^8.431)/g1 + 2*g1*g2^21*t^8.431 + 2*g1^3*g2^25*t^8.431 + 2*g1^5*g2^29*t^8.431 + g1^7*g2^33*t^8.431 - t^8.646/g2^4 + (2*g2^2*t^8.738)/g1^6 + (2*g2^6*t^8.738)/g1^4 + (5*g2^10*t^8.738)/g1^2 + 2*g2^14*t^8.738 + 5*g1^2*g2^18*t^8.738 + 2*g1^4*g2^22*t^8.738 + 2*g1^6*g2^26*t^8.738 + (g2^24*t^8.83)/g1^4 + 2*g2^32*t^8.83 + g1^4*g2^40*t^8.83 + t^8.862/(g1^3*g2^33) + t^8.862/(g1*g2^29) + (g1*t^8.862)/g2^25 + (g1^3*t^8.862)/g2^21 - t^8.954/(g1^3*g2^15) - (4*t^8.954)/(g1*g2^11) - (4*g1*t^8.954)/g2^7 - (g1^3*t^8.954)/g2^3 - t^4.323/(g2^2*y) - t^6.354/(g1^2*y) - (g1^2*g2^8*t^6.354)/y - t^6.662/(g1*g2^3*y) - (g1*g2*t^6.662)/y + (g2^12*t^7.061)/y - t^7.277/(g1*g2^13*y) - (g1*t^7.277)/(g2^9*y) + (g2*t^7.369)/(g1^3*y) + (2*g2^5*t^7.369)/(g1*y) + (2*g1*g2^9*t^7.369)/y + (g1^3*g2^13*t^7.369)/y + t^7.677/(g1^2*g2^2*y) + (g2^2*t^7.677)/y + (g1^2*g2^6*t^7.677)/y + t^7.985/(g1^3*g2^9*y) + (3*t^7.985)/(g1*g2^5*y) + (3*g1*t^7.985)/(g2*y) + (g1^3*g2^3*t^7.985)/y + (2*t^8.292)/(g1^2*g2^12*y) + (2*t^8.292)/(g2^8*y) + (2*g1^2*t^8.292)/(g2^4*y) - (g2^2*t^8.384)/(g1^4*y) + (g2^6*t^8.384)/(g1^2*y) - (g2^10*t^8.384)/y + (g1^2*g2^14*t^8.384)/y - (g1^4*g2^18*t^8.384)/y + t^8.6/(g1*g2^15*y) + (g1*t^8.6)/(g2^11*y) - t^8.692/(g1^3*g2*y) - (g1^3*g2^11*t^8.692)/y + t^8.908/(g2^18*y) - (t^4.323*y)/g2^2 - (t^6.354*y)/g1^2 - g1^2*g2^8*t^6.354*y - (t^6.662*y)/(g1*g2^3) - g1*g2*t^6.662*y + g2^12*t^7.061*y - (t^7.277*y)/(g1*g2^13) - (g1*t^7.277*y)/g2^9 + (g2*t^7.369*y)/g1^3 + (2*g2^5*t^7.369*y)/g1 + 2*g1*g2^9*t^7.369*y + g1^3*g2^13*t^7.369*y + (t^7.677*y)/(g1^2*g2^2) + g2^2*t^7.677*y + g1^2*g2^6*t^7.677*y + (t^7.985*y)/(g1^3*g2^9) + (3*t^7.985*y)/(g1*g2^5) + (3*g1*t^7.985*y)/g2 + g1^3*g2^3*t^7.985*y + (2*t^8.292*y)/(g1^2*g2^12) + (2*t^8.292*y)/g2^8 + (2*g1^2*t^8.292*y)/g2^4 - (g2^2*t^8.384*y)/g1^4 + (g2^6*t^8.384*y)/g1^2 - g2^10*t^8.384*y + g1^2*g2^14*t^8.384*y - g1^4*g2^18*t^8.384*y + (t^8.6*y)/(g1*g2^15) + (g1*t^8.6*y)/g2^11 - (t^8.692*y)/(g1^3*g2) - g1^3*g2^11*t^8.692*y + (t^8.908*y)/g2^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47146 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.7056 0.886 0.7965 [M:[0.9809, 0.9847, 1.1188, 0.7778, 0.7816, 0.6744], q:[0.5766, 0.4425], qb:[0.4387, 0.7797], phi:[0.4406]] t^2.023 + t^2.333 + t^2.345 + t^2.644 + t^2.943 + t^2.954 + t^3.356 + t^3.954 + t^3.966 + t^4.046 + t^4.069 + t^4.357 + 2*t^4.368 + t^4.379 + 2*t^4.667 + t^4.678 + t^4.689 + t^4.781 + t^4.966 + 2*t^4.977 + t^4.988 + t^5.276 + 3*t^5.287 + t^5.299 + t^5.379 + t^5.69 + t^5.701 + t^5.885 + t^5.897 + t^5.908 + t^5.977 - 2*t^6. - t^4.322/y - t^4.322*y detail