Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55629 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{6}$ + ${ }M_{4}M_{7}$ 0.7104 0.8752 0.8117 [M:[1.0303, 0.8402, 0.9697, 1.0648, 0.9352, 0.9697, 0.9352], q:[0.5324, 0.4374], qb:[0.6274, 0.4979], phi:[0.4762]] [M:[[4, 12], [-20, 4], [-4, -12], [8, -8], [-8, 8], [-4, -12], [-8, 8]], q:[[4, -4], [-8, -8]], qb:[[16, 0], [0, 16]], phi:[[-3, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{5}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{6}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$ ${}$ -4 t^2.521 + 2*t^2.806 + t^2.857 + 2*t^2.909 + t^3.376 + t^4.053 + t^4.234 + t^4.338 + t^4.416 + t^4.52 + 2*t^4.623 + t^4.805 + t^4.908 + t^5.041 + t^5.193 + 2*t^5.326 + t^5.378 + t^5.43 + 2*t^5.611 + 2*t^5.663 + 3*t^5.715 + 2*t^5.767 + 2*t^5.818 - 4*t^6. - t^6.103 + t^6.182 + t^6.233 - t^6.285 - t^6.389 - t^6.57 + t^6.574 + t^6.752 + t^6.755 + 2*t^6.859 + t^6.91 + t^6.937 + 2*t^6.962 + 2*t^7.04 + t^7.092 + 3*t^7.144 + 2*t^7.222 + t^7.247 + t^7.274 + 3*t^7.325 + 3*t^7.429 + t^7.48 + 2*t^7.532 - t^7.559 + t^7.562 + t^7.61 + t^7.714 - t^7.766 + t^7.792 + 2*t^7.847 + t^7.899 - t^7.947 + t^7.951 + t^7.999 + t^8.102 + t^8.106 + 2*t^8.132 + t^8.18 + 2*t^8.184 + 2*t^8.236 + 2*t^8.287 - t^8.336 + t^8.391 + 2*t^8.417 + 3*t^8.469 + t^8.569 + 4*t^8.572 + 2*t^8.624 + t^8.651 + 4*t^8.676 - t^8.702 + 2*t^8.728 + t^8.754 - 9*t^8.806 + t^8.832 - 2*t^8.857 - 9*t^8.909 + t^8.936 + t^8.961 - t^4.429/y - t^6.949/y - t^7.234/y - t^7.286/y - t^7.338/y + t^7.52/y + t^7.571/y + t^7.623/y + t^7.908/y + (2*t^8.326)/y + t^8.378/y + (2*t^8.43)/y + t^8.611/y + (2*t^8.663)/y + (4*t^8.715)/y + (2*t^8.767)/y + t^8.818/y + t^8.897/y - t^4.429*y - t^6.949*y - t^7.234*y - t^7.286*y - t^7.338*y + t^7.52*y + t^7.571*y + t^7.623*y + t^7.908*y + 2*t^8.326*y + t^8.378*y + 2*t^8.43*y + t^8.611*y + 2*t^8.663*y + 4*t^8.715*y + 2*t^8.767*y + t^8.818*y + t^8.897*y (g2^4*t^2.521)/g1^20 + (2*g2^8*t^2.806)/g1^8 + t^2.857/(g1^6*g2^2) + (2*t^2.909)/(g1^4*g2^12) + g1^16*g2^16*t^3.376 + t^4.053/(g1^19*g2^17) + (g2^7*t^4.234)/g1^11 + t^4.338/(g1^7*g2^13) + (g2^31*t^4.416)/g1^3 + g1*g2^11*t^4.52 + (2*g1^5*t^4.623)/g2^9 + g1^13*g2^15*t^4.805 + (g1^17*t^4.908)/g2^5 + (g2^8*t^5.041)/g1^40 + (g1^29*t^5.193)/g2 + (2*g2^12*t^5.326)/g1^28 + (g2^2*t^5.378)/g1^26 + t^5.43/(g1^24*g2^8) + (2*g2^16*t^5.611)/g1^16 + (2*g2^6*t^5.663)/g1^14 + (3*t^5.715)/(g1^12*g2^4) + (2*t^5.767)/(g1^10*g2^14) + (2*t^5.818)/(g1^8*g2^24) - 4*t^6. - (g1^4*t^6.103)/g2^20 + g1^8*g2^24*t^6.182 + g1^10*g2^14*t^6.233 - g1^12*g2^4*t^6.285 - (g1^16*t^6.389)/g2^16 - g1^24*g2^8*t^6.57 + t^6.574/(g1^39*g2^13) + g1^32*g2^32*t^6.752 + (g2^11*t^6.755)/g1^31 + (2*t^6.859)/(g1^27*g2^9) + t^6.91/(g1^25*g2^19) + (g2^35*t^6.937)/g1^23 + (2*t^6.962)/(g1^23*g2^29) + (2*g2^15*t^7.04)/g1^19 + (g2^5*t^7.092)/g1^17 + (3*t^7.144)/(g1^15*g2^5) + (2*g2^39*t^7.222)/g1^11 + t^7.247/(g1^11*g2^25) + (g2^29*t^7.274)/g1^9 + (3*g2^19*t^7.325)/g1^7 + (3*t^7.429)/(g1^3*g2) + t^7.48/(g1*g2^11) + (2*g1*t^7.532)/g2^21 - g1^3*g2^33*t^7.559 + (g2^12*t^7.562)/g1^60 + g1^5*g2^23*t^7.61 + g1^9*g2^3*t^7.714 - (g1^11*t^7.766)/g2^7 + g1^13*g2^47*t^7.792 + (2*g2^16*t^7.847)/g1^48 + (g2^6*t^7.899)/g1^46 - g1^19*g2^17*t^7.947 + t^7.951/(g1^44*g2^4) + g1^21*g2^7*t^7.999 + (g1^25*t^8.102)/g2^13 + t^8.106/(g1^38*g2^34) + (2*g2^20*t^8.132)/g1^36 + g1^29*g2^31*t^8.18 + (2*g2^10*t^8.184)/g1^34 + (2*t^8.236)/g1^32 + (2*t^8.287)/(g1^30*g2^10) - g1^35*g2*t^8.336 + t^8.391/(g1^26*g2^30) + (2*g2^24*t^8.417)/g1^24 + (3*g2^14*t^8.469)/g1^22 + g1^45*g2^15*t^8.569 + (4*t^8.572)/(g1^18*g2^6) + (2*t^8.624)/(g1^16*g2^16) + (g2^38*t^8.651)/g1^14 + (4*t^8.676)/(g1^14*g2^26) - (g2^28*t^8.702)/g1^12 + (2*t^8.728)/(g1^12*g2^36) + (g2^18*t^8.754)/g1^10 - (9*g2^8*t^8.806)/g1^8 + (g2^62*t^8.832)/g1^6 - (2*t^8.857)/(g1^6*g2^2) - (9*t^8.909)/(g1^4*g2^12) + (g2^42*t^8.936)/g1^2 + t^8.961/(g1^2*g2^22) - t^4.429/(g1^3*g2*y) - (g2^3*t^6.949)/(g1^23*y) - (g2^7*t^7.234)/(g1^11*y) - t^7.286/(g1^9*g2^3*y) - t^7.338/(g1^7*g2^13*y) + (g1*g2^11*t^7.52)/y + (g1^3*g2*t^7.571)/y + (g1^5*t^7.623)/(g2^9*y) + (g1^17*t^7.908)/(g2^5*y) + (2*g2^12*t^8.326)/(g1^28*y) + (g2^2*t^8.378)/(g1^26*y) + (2*t^8.43)/(g1^24*g2^8*y) + (g2^16*t^8.611)/(g1^16*y) + (2*g2^6*t^8.663)/(g1^14*y) + (4*t^8.715)/(g1^12*g2^4*y) + (2*t^8.767)/(g1^10*g2^14*y) + t^8.818/(g1^8*g2^24*y) + (g2^20*t^8.897)/(g1^4*y) - (t^4.429*y)/(g1^3*g2) - (g2^3*t^6.949*y)/g1^23 - (g2^7*t^7.234*y)/g1^11 - (t^7.286*y)/(g1^9*g2^3) - (t^7.338*y)/(g1^7*g2^13) + g1*g2^11*t^7.52*y + g1^3*g2*t^7.571*y + (g1^5*t^7.623*y)/g2^9 + (g1^17*t^7.908*y)/g2^5 + (2*g2^12*t^8.326*y)/g1^28 + (g2^2*t^8.378*y)/g1^26 + (2*t^8.43*y)/(g1^24*g2^8) + (g2^16*t^8.611*y)/g1^16 + (2*g2^6*t^8.663*y)/g1^14 + (4*t^8.715*y)/(g1^12*g2^4) + (2*t^8.767*y)/(g1^10*g2^14) + (t^8.818*y)/(g1^8*g2^24) + (g2^20*t^8.897*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47092 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{6}$ 0.7054 0.8656 0.815 [M:[1.0419, 0.8743, 0.9581, 1.0419, 0.9581, 0.9581], q:[0.521, 0.4371], qb:[0.6048, 0.521], phi:[0.479]] t^2.623 + 4*t^2.874 + t^3.126 + t^3.377 + t^4.06 + 2*t^4.311 + 4*t^4.563 + 2*t^4.814 + t^5.066 + t^5.246 + 3*t^5.497 + 7*t^5.749 - t^6. - t^4.437/y - t^4.437*y detail