Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55439 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_4^2$ + $ M_1M_6$ 0.628 0.8135 0.772 [X:[], M:[1.2582, 0.9348, 0.7418, 1.0, 0.7745, 0.7418], q:[0.5, 0.2418], qb:[0.5652, 0.7582], phi:[0.4837]] [X:[], M:[[1], [-8], [-1], [0], [3], [-1]], q:[[0], [-1]], qb:[[8], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_6$, $ M_5$, $ q_2\tilde{q}_1$, $ M_2$, $ \phi_1^2$, $ \phi_1q_2^2$, $ M_4$, $ \phi_1q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_6$, $ M_6^2$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_3M_5$, $ M_5M_6$, $ M_5^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_2M_3$, $ M_2M_6$, $ M_2M_5$, $ M_3\phi_1^2$, $ M_6\phi_1^2$, $ M_3\phi_1q_2^2$, $ M_6\phi_1q_2^2$, $ M_3M_4$, $ M_4M_6$, $ M_5\phi_1^2$, $ M_5\phi_1q_2^2$, $ M_2q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_5$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2\phi_1^2$, $ M_2\phi_1q_2^2$, $ M_2M_4$, $ \phi_1^4$, $ \phi_1^3q_2^2$, $ \phi_1^2q_2^4$, $ M_4\phi_1^2$, $ M_4\phi_1q_2^2$ . -3 2*t^2.23 + t^2.32 + t^2.42 + t^2.8 + 2*t^2.9 + t^3. + t^3.87 + t^3.97 + 4*t^4.45 + 2*t^4.55 + 4*t^4.65 + t^4.74 + 2*t^4.84 + t^5.03 + 5*t^5.13 + 4*t^5.23 + 3*t^5.32 + t^5.42 + t^5.61 + 2*t^5.71 + 3*t^5.8 + t^5.9 - 3*t^6. + t^6.1 + t^6.2 + 2*t^6.29 + t^6.39 - t^6.48 - t^6.58 + 4*t^6.68 + 4*t^6.77 + 8*t^6.87 + 3*t^6.97 + 5*t^7.07 + 2*t^7.17 + 3*t^7.26 + 8*t^7.35 + 6*t^7.45 + 6*t^7.55 + 4*t^7.65 + 4*t^7.74 + t^7.83 + 2*t^7.84 + 3*t^7.93 + 7*t^8.03 + 5*t^8.13 - 4*t^8.23 - 2*t^8.32 + t^8.41 - 4*t^8.42 + 2*t^8.51 + t^8.52 + 4*t^8.61 + 2*t^8.62 + 5*t^8.71 - 4*t^8.8 + 2*t^8.81 - 4*t^8.9 - t^4.45/y - t^6.68/y - t^6.77/y - t^7.26/y - t^7.35/y + t^7.45/y + (3*t^7.55)/y + (3*t^7.65)/y + t^7.74/y + (2*t^8.03)/y + (6*t^8.13)/y + (6*t^8.23)/y + (3*t^8.32)/y + t^8.42/y + (2*t^8.71)/y + (2*t^8.8)/y + t^8.9/y - t^4.45*y - t^6.68*y - t^6.77*y - t^7.26*y - t^7.35*y + t^7.45*y + 3*t^7.55*y + 3*t^7.65*y + t^7.74*y + 2*t^8.03*y + 6*t^8.13*y + 6*t^8.23*y + 3*t^8.32*y + t^8.42*y + 2*t^8.71*y + 2*t^8.8*y + t^8.9*y (2*t^2.23)/g1 + g1^3*t^2.32 + g1^7*t^2.42 + t^2.8/g1^8 + (2*t^2.9)/g1^4 + t^3. + g1^5*t^3.87 + g1^9*t^3.97 + (4*t^4.45)/g1^2 + 2*g1^2*t^4.55 + 4*g1^6*t^4.65 + g1^10*t^4.74 + 2*g1^14*t^4.84 + t^5.03/g1^9 + (5*t^5.13)/g1^5 + (4*t^5.23)/g1 + 3*g1^3*t^5.32 + g1^7*t^5.42 + t^5.61/g1^16 + (2*t^5.71)/g1^12 + (3*t^5.8)/g1^8 + t^5.9/g1^4 - 3*t^6. + g1^4*t^6.1 + g1^8*t^6.2 + 2*g1^12*t^6.29 + g1^16*t^6.39 - t^6.48/g1^11 - t^6.58/g1^7 + (4*t^6.68)/g1^3 + 4*g1*t^6.77 + 8*g1^5*t^6.87 + 3*g1^9*t^6.97 + 5*g1^13*t^7.07 + 2*g1^17*t^7.17 + t^7.26/g1^10 + 2*g1^21*t^7.26 + (8*t^7.35)/g1^6 + (6*t^7.45)/g1^2 + 6*g1^2*t^7.55 + 4*g1^6*t^7.65 + 4*g1^10*t^7.74 + t^7.83/g1^17 + 2*g1^14*t^7.84 + (3*t^7.93)/g1^13 + (7*t^8.03)/g1^9 + (5*t^8.13)/g1^5 - (4*t^8.23)/g1 - 2*g1^3*t^8.32 + t^8.41/g1^24 - 4*g1^7*t^8.42 + (2*t^8.51)/g1^20 + g1^11*t^8.52 + (4*t^8.61)/g1^16 + 2*g1^15*t^8.62 + (2*t^8.71)/g1^12 + 3*g1^19*t^8.71 - (4*t^8.8)/g1^8 + 2*g1^23*t^8.81 - (4*t^8.9)/g1^4 - t^4.45/(g1^2*y) - t^6.68/(g1^3*y) - (g1*t^6.77)/y - t^7.26/(g1^10*y) - t^7.35/(g1^6*y) + t^7.45/(g1^2*y) + (3*g1^2*t^7.55)/y + (3*g1^6*t^7.65)/y + (g1^10*t^7.74)/y + (2*t^8.03)/(g1^9*y) + (6*t^8.13)/(g1^5*y) + (6*t^8.23)/(g1*y) + (3*g1^3*t^8.32)/y + (g1^7*t^8.42)/y + (2*t^8.71)/(g1^12*y) + (2*t^8.8)/(g1^8*y) + t^8.9/(g1^4*y) - (t^4.45*y)/g1^2 - (t^6.68*y)/g1^3 - g1*t^6.77*y - (t^7.26*y)/g1^10 - (t^7.35*y)/g1^6 + (t^7.45*y)/g1^2 + 3*g1^2*t^7.55*y + 3*g1^6*t^7.65*y + g1^10*t^7.74*y + (2*t^8.03*y)/g1^9 + (6*t^8.13*y)/g1^5 + (6*t^8.23*y)/g1 + 3*g1^3*t^8.32*y + g1^7*t^8.42*y + (2*t^8.71*y)/g1^12 + (2*t^8.8*y)/g1^8 + (t^8.9*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47280 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_4^2$ 0.6087 0.7781 0.7823 [X:[], M:[1.2578, 0.9373, 0.7422, 1.0, 0.7735], q:[0.5, 0.2422], qb:[0.5627, 0.7578], phi:[0.4843]] t^2.23 + t^2.32 + t^2.41 + t^2.81 + 2*t^2.91 + t^3. + t^3.77 + t^3.87 + t^3.96 + 2*t^4.45 + t^4.55 + 3*t^4.64 + t^4.74 + 2*t^4.83 + 3*t^5.13 + 3*t^5.23 + 3*t^5.32 + t^5.41 + t^5.62 + 2*t^5.72 + 3*t^5.81 + t^5.91 - 2*t^6. - t^4.45/y - t^4.45*y detail