Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55419 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_2$ + $ q_1q_2\tilde{q}_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ + $ M_6\phi_1q_2^2$ 0.653 0.8624 0.7572 [X:[], M:[0.9692, 1.0308, 0.8347, 0.7115, 0.7731, 0.9077], q:[0.7423, 0.2885], qb:[0.4846, 0.423], phi:[0.5154]] [X:[], M:[[4], [-4], [-11], [5], [-3], [12]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ q_2\tilde{q}_2$, $ M_5$, $ q_2\tilde{q}_1$, $ M_3$, $ M_6$, $ \tilde{q}_1\tilde{q}_2$, $ M_2$, $ \phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_5$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3M_4$, $ M_5^2$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3q_2\tilde{q}_2$, $ M_3M_5$, $ M_3q_2\tilde{q}_1$, $ M_4M_6$, $ M_6q_2\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_3^2$, $ M_5M_6$, $ M_6q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_2M_4$, $ M_3M_6$, $ M_4\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2M_5$, $ M_5\phi_1^2$, $ M_2q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_6^2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2M_3$, $ M_3\phi_1^2$, $ M_2M_6$, $ M_6\phi_1^2$, $ M_4\phi_1q_2\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ $M_5\phi_1q_2\tilde{q}_2$ -2 2*t^2.13 + 2*t^2.32 + t^2.5 + 2*t^2.72 + 2*t^3.09 + t^3.68 + t^4.08 + 4*t^4.27 + 5*t^4.45 + 5*t^4.64 + 2*t^4.82 + 4*t^4.86 + t^5.01 + 4*t^5.04 + 6*t^5.23 + 3*t^5.41 + 3*t^5.45 + t^5.6 + 4*t^5.82 - 2*t^6. + t^6.18 + 2*t^6.22 + 8*t^6.4 + 7*t^6.59 + 10*t^6.77 + 2*t^6.81 + 6*t^6.96 + 7*t^6.99 + 4*t^7.14 + 10*t^7.18 + 2*t^7.33 + 13*t^7.36 + t^7.51 + 7*t^7.55 + 6*t^7.58 + 6*t^7.73 + 6*t^7.77 + t^7.92 + 7*t^7.95 + t^8.1 - 4*t^8.13 + 5*t^8.17 - 3*t^8.32 + 4*t^8.35 - 4*t^8.5 + 15*t^8.54 - t^8.69 + 5*t^8.72 + 11*t^8.91 + 4*t^8.94 - t^4.55/y - t^6.68/y - t^6.87/y - t^7.05/y + (5*t^7.45)/y + (2*t^7.64)/y + (3*t^7.82)/y + (4*t^7.86)/y + (5*t^8.04)/y + (7*t^8.23)/y + (5*t^8.41)/y + t^8.45/y + (2*t^8.6)/y + (5*t^8.82)/y - t^4.55*y - t^6.68*y - t^6.87*y - t^7.05*y + 5*t^7.45*y + 2*t^7.64*y + 3*t^7.82*y + 4*t^7.86*y + 5*t^8.04*y + 7*t^8.23*y + 5*t^8.41*y + t^8.45*y + 2*t^8.6*y + 5*t^8.82*y 2*g1^5*t^2.13 + (2*t^2.32)/g1^3 + t^2.5/g1^11 + 2*g1^12*t^2.72 + (2*t^3.09)/g1^4 + g1^3*t^3.68 + g1^18*t^4.08 + 4*g1^10*t^4.27 + 5*g1^2*t^4.45 + (5*t^4.64)/g1^6 + (2*t^4.82)/g1^14 + 4*g1^17*t^4.86 + t^5.01/g1^22 + 4*g1^9*t^5.04 + 6*g1*t^5.23 + (3*t^5.41)/g1^7 + 3*g1^24*t^5.45 + t^5.6/g1^15 + 4*g1^8*t^5.82 - 2*t^6. + t^6.18/g1^8 + 2*g1^23*t^6.22 + 8*g1^15*t^6.4 + 7*g1^7*t^6.59 + (10*t^6.77)/g1 + 2*g1^30*t^6.81 + (6*t^6.96)/g1^9 + 7*g1^22*t^6.99 + (4*t^7.14)/g1^17 + 10*g1^14*t^7.18 + (2*t^7.33)/g1^25 + 13*g1^6*t^7.36 + t^7.51/g1^33 + (7*t^7.55)/g1^2 + 6*g1^29*t^7.58 + (6*t^7.73)/g1^10 + 6*g1^21*t^7.77 + t^7.92/g1^18 + 7*g1^13*t^7.95 + t^8.1/g1^26 - 4*g1^5*t^8.13 + 5*g1^36*t^8.17 - (3*t^8.32)/g1^3 + 4*g1^28*t^8.35 - (4*t^8.5)/g1^11 + 15*g1^20*t^8.54 - t^8.69/g1^19 + 5*g1^12*t^8.72 + 11*g1^4*t^8.91 + 4*g1^35*t^8.94 - t^4.55/(g1^2*y) - (g1^3*t^6.68)/y - t^6.87/(g1^5*y) - t^7.05/(g1^13*y) + (5*g1^2*t^7.45)/y + (2*t^7.64)/(g1^6*y) + (3*t^7.82)/(g1^14*y) + (4*g1^17*t^7.86)/y + (5*g1^9*t^8.04)/y + (7*g1*t^8.23)/y + (5*t^8.41)/(g1^7*y) + (g1^24*t^8.45)/y + (2*t^8.6)/(g1^15*y) + (5*g1^8*t^8.82)/y - (t^4.55*y)/g1^2 - g1^3*t^6.68*y - (t^6.87*y)/g1^5 - (t^7.05*y)/g1^13 + 5*g1^2*t^7.45*y + (2*t^7.64*y)/g1^6 + (3*t^7.82*y)/g1^14 + 4*g1^17*t^7.86*y + 5*g1^9*t^8.04*y + 7*g1*t^8.23*y + (5*t^8.41*y)/g1^7 + g1^24*t^8.45*y + (2*t^8.6*y)/g1^15 + 5*g1^8*t^8.82*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46922 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_2$ + $ q_1q_2\tilde{q}_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ 0.6462 0.8496 0.7606 [X:[], M:[0.9822, 1.0178, 0.799, 0.7277, 0.7634], q:[0.7455, 0.2723], qb:[0.4911, 0.4555], phi:[0.5089]] 2*t^2.18 + 2*t^2.29 + t^2.4 + t^2.84 + 2*t^3.05 + t^3.16 + t^3.71 + t^4.26 + 4*t^4.37 + 5*t^4.47 + 5*t^4.58 + 2*t^4.69 + t^4.79 + 2*t^5.02 + 2*t^5.13 + 5*t^5.24 + 5*t^5.34 + 3*t^5.45 + t^5.56 + t^5.68 + 2*t^5.89 - t^6. - t^4.53/y - t^4.53*y detail