Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55393 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_2$ | 0.6562 | 0.8881 | 0.7389 | [X:[], M:[0.9276, 0.9276, 0.9276, 0.826, 0.6811, 0.6811], q:[0.7319, 0.3406], qb:[0.3406, 0.4421], phi:[0.5362]] | [X:[], M:[[4], [4], [4], [-18], [-10], [-10]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_4$, $ M_1$, $ M_2$, $ M_3$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_4M_5$, $ M_4M_6$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_2^2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1M_5$, $ M_2M_5$, $ M_3M_5$, $ M_1M_6$, $ M_2M_6$, $ M_3M_6$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ \phi_1q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1M_4$, $ M_2M_4$, $ M_3M_4$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1M_3$, $ M_2M_3$, $ M_3^2$, $ M_5\phi_1q_2^2$, $ M_6\phi_1q_2^2$, $ M_5\phi_1q_2\tilde{q}_1$, $ M_6\phi_1q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_5\phi_1\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1^2$, $ \phi_1q_2^2\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ | $\phi_1q_2^3\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$, $ \phi_1\tilde{q}_1^3\tilde{q}_2$ | -1 | 3*t^2.04 + 2*t^2.35 + t^2.48 + 3*t^2.78 + 3*t^3.65 + 6*t^4.09 + t^4.26 + 6*t^4.39 + 3*t^4.52 + 3*t^4.7 + 11*t^4.83 + t^4.96 + 6*t^5.13 + 3*t^5.26 + 5*t^5.57 + 7*t^5.7 - t^6. + 13*t^6.13 + 16*t^6.43 + 6*t^6.56 + 2*t^6.61 + 7*t^6.74 + 21*t^6.87 + 3*t^7. + 6*t^7.04 + 15*t^7.17 + 14*t^7.3 + t^7.43 + 7*t^7.48 + 13*t^7.61 + 15*t^7.74 + 7*t^7.91 - 2*t^8.04 + 22*t^8.17 - t^8.35 + 25*t^8.48 + t^8.52 + 13*t^8.61 - 2*t^8.78 + 38*t^8.91 + 3*t^8.96 - t^4.61/y - (2*t^6.65)/y + (2*t^7.09)/y + (4*t^7.39)/y + (3*t^7.52)/y + t^7.7/y + (13*t^7.83)/y + (7*t^8.13)/y + (3*t^8.26)/y + (5*t^8.57)/y + (6*t^8.7)/y - t^4.61*y - 2*t^6.65*y + 2*t^7.09*y + 4*t^7.39*y + 3*t^7.52*y + t^7.7*y + 13*t^7.83*y + 7*t^8.13*y + 3*t^8.26*y + 5*t^8.57*y + 6*t^8.7*y | (3*t^2.04)/g1^10 + 2*g1^12*t^2.35 + t^2.48/g1^18 + 3*g1^4*t^2.78 + (3*t^3.65)/g1^12 + (6*t^4.09)/g1^20 + g1^32*t^4.26 + 6*g1^2*t^4.39 + (3*t^4.52)/g1^28 + 3*g1^24*t^4.7 + (11*t^4.83)/g1^6 + t^4.96/g1^36 + 6*g1^16*t^5.13 + (3*t^5.26)/g1^14 + 5*g1^8*t^5.57 + (7*t^5.7)/g1^22 - t^6. + (13*t^6.13)/g1^30 + (16*t^6.43)/g1^8 + (6*t^6.56)/g1^38 + 2*g1^44*t^6.61 + 7*g1^14*t^6.74 + (21*t^6.87)/g1^16 + (3*t^7.)/g1^46 + 6*g1^36*t^7.04 + 15*g1^6*t^7.17 + (14*t^7.3)/g1^24 + t^7.43/g1^54 + 7*g1^28*t^7.48 + (13*t^7.61)/g1^2 + (15*t^7.74)/g1^32 + 7*g1^20*t^7.91 - (2*t^8.04)/g1^10 + (22*t^8.17)/g1^40 - g1^12*t^8.35 + (25*t^8.48)/g1^18 + g1^64*t^8.52 + (13*t^8.61)/g1^48 - 2*g1^4*t^8.78 + (38*t^8.91)/g1^26 + 3*g1^56*t^8.96 - t^4.61/(g1^2*y) - (2*t^6.65)/(g1^12*y) + (2*t^7.09)/(g1^20*y) + (4*g1^2*t^7.39)/y + (3*t^7.52)/(g1^28*y) + (g1^24*t^7.7)/y + (13*t^7.83)/(g1^6*y) + (7*g1^16*t^8.13)/y + (3*t^8.26)/(g1^14*y) + (5*g1^8*t^8.57)/y + (6*t^8.7)/(g1^22*y) - (t^4.61*y)/g1^2 - (2*t^6.65*y)/g1^12 + (2*t^7.09*y)/g1^20 + 4*g1^2*t^7.39*y + (3*t^7.52*y)/g1^28 + g1^24*t^7.7*y + (13*t^7.83*y)/g1^6 + 7*g1^16*t^8.13*y + (3*t^8.26*y)/g1^14 + 5*g1^8*t^8.57*y + (6*t^8.7*y)/g1^22 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47008 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ | 0.6355 | 0.8474 | 0.7499 | [X:[], M:[0.9272, 0.9272, 0.9272, 0.8277, 0.6821], q:[0.7318, 0.341], qb:[0.341, 0.4405], phi:[0.5364]] | 2*t^2.05 + 2*t^2.34 + t^2.48 + 3*t^2.78 + 3*t^3.66 + t^3.95 + 3*t^4.09 + t^4.25 + 4*t^4.39 + 2*t^4.53 + 3*t^4.69 + 8*t^4.83 + t^4.97 + 6*t^5.13 + 3*t^5.26 + 5*t^5.56 + 4*t^5.7 + t^6. - t^4.61/y - t^4.61*y | detail |