Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55382 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{6}$ | 0.6674 | 0.8457 | 0.7891 | [M:[1.18, 0.82, 0.82, 0.7534, 0.7201, 0.82], q:[0.3767, 0.4433], qb:[0.8033, 0.8033], phi:[0.3933]] | [M:[[-6], [6], [6], [-14], [-24], [6]], q:[[-7], [13]], qb:[[1], [1]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{1}^{2}$, ${ }M_{4}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}^{2}$, ${ }M_{5}\phi_{1}q_{1}q_{2}$, ${ }M_{6}\phi_{1}q_{1}^{2}$, ${ }M_{4}\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$ | ${}\phi_{1}^{3}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$ | -1 | t^2.16 + t^2.26 + t^2.36 + 3*t^2.46 + t^3.44 + t^3.64 + t^3.74 + t^4.32 + t^4.42 + 2*t^4.52 + 4*t^4.62 + 4*t^4.72 + 4*t^4.82 + 6*t^4.92 + t^5.6 + t^5.7 + t^5.8 + 3*t^5.9 - t^6. + 2*t^6.1 + 2*t^6.2 + t^6.481 + t^6.581 + 2*t^6.681 + 5*t^6.78 + 6*t^6.88 + 7*t^6.98 + 9*t^7.08 + 7*t^7.18 + 5*t^7.28 + 8*t^7.38 + t^7.761 + t^7.861 + 2*t^7.96 + 3*t^8.06 + t^8.16 - t^8.26 + t^8.36 - 6*t^8.46 + t^8.56 + t^8.641 + 2*t^8.66 + t^8.741 + 2*t^8.841 + 5*t^8.941 - t^4.18/y - t^6.34/y - t^6.44/y - t^6.54/y - (2*t^6.64)/y + t^7.42/y + t^7.52/y + (4*t^7.62)/y + (5*t^7.72)/y + (4*t^7.82)/y + (4*t^7.92)/y + t^8.02/y - t^8.501/y - t^8.7/y - t^8.8/y + (2*t^8.9)/y - t^4.18*y - t^6.34*y - t^6.44*y - t^6.54*y - 2*t^6.64*y + t^7.42*y + t^7.52*y + 4*t^7.62*y + 5*t^7.72*y + 4*t^7.82*y + 4*t^7.92*y + t^8.02*y - t^8.501*y - t^8.7*y - t^8.8*y + 2*t^8.9*y | t^2.16/g1^24 + t^2.26/g1^14 + t^2.36/g1^4 + 3*g1^6*t^2.46 + t^3.44/g1^16 + g1^4*t^3.64 + g1^14*t^3.74 + t^4.32/g1^48 + t^4.42/g1^38 + (2*t^4.52)/g1^28 + (4*t^4.62)/g1^18 + (4*t^4.72)/g1^8 + 4*g1^2*t^4.82 + 6*g1^12*t^4.92 + t^5.6/g1^40 + t^5.7/g1^30 + t^5.8/g1^20 + (3*t^5.9)/g1^10 - t^6. + 2*g1^10*t^6.1 + 2*g1^20*t^6.2 + t^6.481/g1^72 + t^6.581/g1^62 + (2*t^6.681)/g1^52 + (5*t^6.78)/g1^42 + (6*t^6.88)/g1^32 + (7*t^6.98)/g1^22 + (9*t^7.08)/g1^12 + (7*t^7.18)/g1^2 + 5*g1^8*t^7.28 + 8*g1^18*t^7.38 + t^7.761/g1^64 + t^7.861/g1^54 + (2*t^7.96)/g1^44 + (3*t^8.06)/g1^34 + t^8.16/g1^24 - t^8.26/g1^14 + t^8.36/g1^4 - 6*g1^6*t^8.46 + g1^16*t^8.56 + t^8.641/g1^96 + 2*g1^26*t^8.66 + t^8.741/g1^86 + (2*t^8.841)/g1^76 + (5*t^8.941)/g1^66 - t^4.18/(g1^2*y) - t^6.34/(g1^26*y) - t^6.44/(g1^16*y) - t^6.54/(g1^6*y) - (2*g1^4*t^6.64)/y + t^7.42/(g1^38*y) + t^7.52/(g1^28*y) + (4*t^7.62)/(g1^18*y) + (5*t^7.72)/(g1^8*y) + (4*g1^2*t^7.82)/y + (4*g1^12*t^7.92)/y + (g1^22*t^8.02)/y - t^8.501/(g1^50*y) - t^8.7/(g1^30*y) - t^8.8/(g1^20*y) + (2*t^8.9)/(g1^10*y) - (t^4.18*y)/g1^2 - (t^6.34*y)/g1^26 - (t^6.44*y)/g1^16 - (t^6.54*y)/g1^6 - 2*g1^4*t^6.64*y + (t^7.42*y)/g1^38 + (t^7.52*y)/g1^28 + (4*t^7.62*y)/g1^18 + (5*t^7.72*y)/g1^8 + 4*g1^2*t^7.82*y + 4*g1^12*t^7.92*y + g1^22*t^8.02*y - (t^8.501*y)/g1^50 - (t^8.7*y)/g1^30 - (t^8.8*y)/g1^20 + (2*t^8.9*y)/g1^10 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46977 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ | 0.6522 | 0.82 | 0.7954 | [M:[1.177, 0.823, 0.823, 0.7464, 0.7082], q:[0.3732, 0.4497], qb:[0.8038, 0.8038], phi:[0.3923]] | t^2.125 + t^2.239 + t^2.354 + 2*t^2.469 + t^3.416 + t^3.531 + t^3.646 + t^3.761 + t^4.249 + t^4.364 + 2*t^4.479 + 3*t^4.593 + 3*t^4.708 + 3*t^4.823 + 3*t^4.938 + t^5.541 + 2*t^5.656 + 2*t^5.77 + 3*t^5.885 + t^6. - t^4.177/y - t^4.177*y | detail |