Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55361 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}X_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ | 0.5822 | 0.7311 | 0.7964 | [X:[1.382, 1.3146], M:[0.618, 0.6854, 1.0, 0.7641, 1.0786, 1.0786], q:[0.7697, 0.6124], qb:[0.5449, 0.2303], phi:[0.4607]] | [X:[[-6], [16]], M:[[6], [-16], [0], [-12], [4], [4]], q:[[1], [-7]], qb:[[15], [-1]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{2}$, ${ }X_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$ | ${}$ | -2 | t^2.292 + t^2.326 + t^2.528 + t^3. + 2*t^3.236 + t^3.472 + t^3.91 + t^3.944 + t^4.146 + t^4.584 + t^4.618 + 2*t^4.652 + t^4.82 + t^4.854 + t^5.056 + t^5.292 + t^5.326 + 3*t^5.528 + 2*t^5.562 + 2*t^5.764 - 2*t^6. + 2*t^6.236 + t^6.27 + t^6.438 + 4*t^6.472 + t^6.877 + 2*t^6.944 + 2*t^6.977 + t^7.112 + 2*t^7.146 + 2*t^7.18 + t^7.348 + t^7.382 + t^7.584 - t^7.618 + t^7.652 + 3*t^7.82 + 2*t^7.854 + 4*t^7.888 + 3*t^8.056 + t^8.09 + t^8.123 - t^8.292 - 3*t^8.326 - t^8.528 + 2*t^8.562 + 2*t^8.595 + t^8.73 + 3*t^8.764 + 4*t^8.798 + t^8.966 - t^4.382/y - t^6.674/y + t^7.146/y + t^7.82/y + t^7.854/y + t^8.09/y + t^8.292/y + t^8.326/y + (3*t^8.528)/y + (2*t^8.562)/y + (3*t^8.764)/y + t^8.798/y - t^8.966/y - t^4.382*y - t^6.674*y + t^7.146*y + t^7.82*y + t^7.854*y + t^8.09*y + t^8.292*y + t^8.326*y + 3*t^8.528*y + 2*t^8.562*y + 3*t^8.764*y + t^8.798*y - t^8.966*y | t^2.292/g1^12 + g1^14*t^2.326 + t^2.528/g1^8 + t^3. + 2*g1^4*t^3.236 + g1^8*t^3.472 + t^3.91/g1^10 + g1^16*t^3.944 + t^4.146/g1^6 + t^4.584/g1^24 + g1^2*t^4.618 + 2*g1^28*t^4.652 + t^4.82/g1^20 + g1^6*t^4.854 + t^5.056/g1^16 + t^5.292/g1^12 + g1^14*t^5.326 + (3*t^5.528)/g1^8 + 2*g1^18*t^5.562 + (2*t^5.764)/g1^4 - 2*t^6. + 2*g1^4*t^6.236 + g1^30*t^6.27 + t^6.438/g1^18 + 4*g1^8*t^6.472 + t^6.877/g1^36 + 2*g1^16*t^6.944 + 2*g1^42*t^6.977 + t^7.112/g1^32 + (2*t^7.146)/g1^6 + 2*g1^20*t^7.18 + t^7.348/g1^28 + t^7.382/g1^2 + t^7.584/g1^24 - g1^2*t^7.618 + g1^28*t^7.652 + (3*t^7.82)/g1^20 + 2*g1^6*t^7.854 + 4*g1^32*t^7.888 + (3*t^8.056)/g1^16 + g1^10*t^8.09 + g1^36*t^8.123 - t^8.292/g1^12 - 3*g1^14*t^8.326 - t^8.528/g1^8 + 2*g1^18*t^8.562 + 2*g1^44*t^8.595 + t^8.73/g1^30 + (3*t^8.764)/g1^4 + 4*g1^22*t^8.798 + t^8.966/g1^26 - t^4.382/(g1^2*y) - t^6.674/(g1^14*y) + t^7.146/(g1^6*y) + t^7.82/(g1^20*y) + (g1^6*t^7.854)/y + (g1^10*t^8.09)/y + t^8.292/(g1^12*y) + (g1^14*t^8.326)/y + (3*t^8.528)/(g1^8*y) + (2*g1^18*t^8.562)/y + (3*t^8.764)/(g1^4*y) + (g1^22*t^8.798)/y - t^8.966/(g1^26*y) - (t^4.382*y)/g1^2 - (t^6.674*y)/g1^14 + (t^7.146*y)/g1^6 + (t^7.82*y)/g1^20 + g1^6*t^7.854*y + g1^10*t^8.09*y + (t^8.292*y)/g1^12 + g1^14*t^8.326*y + (3*t^8.528*y)/g1^8 + 2*g1^18*t^8.562*y + (3*t^8.764*y)/g1^4 + g1^22*t^8.798*y - (t^8.966*y)/g1^26 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46983 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}X_{2}$ + ${ }M_{5}\phi_{1}^{2}$ | 0.5895 | 0.7432 | 0.7932 | [X:[1.3776, 1.3265], M:[0.6224, 0.6735, 1.0, 0.7551, 1.0816], q:[0.7704, 0.6072], qb:[0.5561, 0.2296], phi:[0.4592]] | t^2.265 + t^2.357 + t^2.51 + t^2.755 + t^3. + t^3.245 + t^3.49 + t^3.888 + t^3.979 + t^4.133 + t^4.531 + t^4.622 + 2*t^4.714 + t^4.776 + t^4.867 + 2*t^5.021 + t^5.112 + 2*t^5.265 + t^5.357 + 3*t^5.51 + t^5.602 + 2*t^5.755 - t^6. - t^4.378/y - t^4.378*y | detail |