Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55306 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.71 0.8998 0.7891 [M:[1.0843, 0.7472, 0.7472, 1.0843, 0.9157, 0.6741], q:[0.4817, 0.434], qb:[0.7711, 0.4817], phi:[0.4579]] [M:[[4], [-12], [-12], [4], [-4], [32]], q:[[11], [-15]], qb:[[1], [11]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}M_{4}\phi_{1}^{2}$ -3 t^2.022 + 2*t^2.242 + 2*t^2.747 + t^2.89 + t^3.253 + t^3.615 + t^4.045 + 2*t^4.121 + 5*t^4.264 + 3*t^4.483 + 2*t^4.769 + t^4.913 + 4*t^4.989 + 2*t^5.132 + t^5.275 + 5*t^5.494 + 3*t^5.638 + t^5.781 - 3*t^6. + t^6.067 + t^6.143 + 5*t^6.286 + 5*t^6.362 + 8*t^6.506 + 4*t^6.725 + 2*t^6.792 + 2*t^6.868 + t^6.935 + 9*t^7.011 + 5*t^7.154 + 4*t^7.231 + t^7.297 - t^7.374 + 3*t^7.517 + 3*t^7.66 + 9*t^7.736 + t^7.803 + 3*t^7.879 - 3*t^8.022 + t^8.089 - t^8.099 + t^8.165 - 3*t^8.242 + 5*t^8.308 + 8*t^8.385 + 15*t^8.528 + 4*t^8.604 + t^8.671 + 2*t^8.747 + 2*t^8.814 - 5*t^8.89 + t^8.957 + 5*t^8.967 - t^4.374/y - t^6.396/y - (2*t^6.615)/y + (2*t^7.264)/y + t^7.483/y + (2*t^7.769)/y + t^7.913/y + (4*t^7.989)/y + (4*t^8.132)/y + t^8.275/y + t^8.351/y - t^8.418/y + (3*t^8.494)/y + t^8.638/y - t^8.857/y - t^4.374*y - t^6.396*y - 2*t^6.615*y + 2*t^7.264*y + t^7.483*y + 2*t^7.769*y + t^7.913*y + 4*t^7.989*y + 4*t^8.132*y + t^8.275*y + t^8.351*y - t^8.418*y + 3*t^8.494*y + t^8.638*y - t^8.857*y g1^32*t^2.022 + (2*t^2.242)/g1^12 + (2*t^2.747)/g1^4 + g1^22*t^2.89 + g1^4*t^3.253 + t^3.615/g1^14 + g1^64*t^4.045 + (2*t^4.121)/g1^6 + 5*g1^20*t^4.264 + (3*t^4.483)/g1^24 + 2*g1^28*t^4.769 + g1^54*t^4.913 + (4*t^4.989)/g1^16 + 2*g1^10*t^5.132 + g1^36*t^5.275 + (5*t^5.494)/g1^8 + 3*g1^18*t^5.638 + g1^44*t^5.781 - 3*t^6. + g1^96*t^6.067 + g1^26*t^6.143 + 5*g1^52*t^6.286 + (5*t^6.362)/g1^18 + 8*g1^8*t^6.506 + (4*t^6.725)/g1^36 + 2*g1^60*t^6.792 + (2*t^6.868)/g1^10 + g1^86*t^6.935 + 9*g1^16*t^7.011 + 5*g1^42*t^7.154 + (4*t^7.231)/g1^28 + g1^68*t^7.297 - t^7.374/g1^2 + 3*g1^24*t^7.517 + 3*g1^50*t^7.66 + (9*t^7.736)/g1^20 + g1^76*t^7.803 + 3*g1^6*t^7.879 - 3*g1^32*t^8.022 + g1^128*t^8.089 - t^8.099/g1^38 + g1^58*t^8.165 - (3*t^8.242)/g1^12 + 5*g1^84*t^8.308 + 8*g1^14*t^8.385 + 15*g1^40*t^8.528 + (4*t^8.604)/g1^30 + g1^66*t^8.671 + (2*t^8.747)/g1^4 + 2*g1^92*t^8.814 - 5*g1^22*t^8.89 + g1^118*t^8.957 + (5*t^8.967)/g1^48 - t^4.374/(g1^2*y) - (g1^30*t^6.396)/y - (2*t^6.615)/(g1^14*y) + (2*g1^20*t^7.264)/y + t^7.483/(g1^24*y) + (2*g1^28*t^7.769)/y + (g1^54*t^7.913)/y + (4*t^7.989)/(g1^16*y) + (4*g1^10*t^8.132)/y + (g1^36*t^8.275)/y + t^8.351/(g1^34*y) - (g1^62*t^8.418)/y + (3*t^8.494)/(g1^8*y) + (g1^18*t^8.638)/y - t^8.857/(g1^26*y) - (t^4.374*y)/g1^2 - g1^30*t^6.396*y - (2*t^6.615*y)/g1^14 + 2*g1^20*t^7.264*y + (t^7.483*y)/g1^24 + 2*g1^28*t^7.769*y + g1^54*t^7.913*y + (4*t^7.989*y)/g1^16 + 4*g1^10*t^8.132*y + g1^36*t^8.275*y + (t^8.351*y)/g1^34 - g1^62*t^8.418*y + (3*t^8.494*y)/g1^8 + g1^18*t^8.638*y - (t^8.857*y)/g1^26


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46807 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}M_{5}$ 0.6892 0.8587 0.8026 [M:[1.0848, 0.7456, 0.7456, 1.0848, 0.9152], q:[0.4832, 0.432], qb:[0.7712, 0.4832], phi:[0.4576]] 2*t^2.237 + 2*t^2.746 + t^2.899 + t^3.254 + t^3.61 + t^3.965 + 2*t^4.118 + 3*t^4.272 + 3*t^4.474 + 4*t^4.982 + 2*t^5.136 + 5*t^5.491 + 2*t^5.645 + t^5.798 - 3*t^6. - t^4.373/y - t^4.373*y detail