Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55301 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_6\phi_1q_1q_2$ + $ M_7\phi_1q_1^2$ | 0.705 | 0.8925 | 0.7899 | [X:[], M:[1.1608, 0.9877, 0.8392, 0.7581, 0.9066, 0.7244, 0.8055], q:[0.379, 0.4601], qb:[0.6333, 0.7818], phi:[0.4364]] | [X:[], M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [1, -15], [1, -5], [-2, 18]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_4$, $ M_7$, $ M_3$, $ \phi_1^2$, $ M_5$, $ M_2$, $ M_1$, $ \phi_1q_2^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_6$, $ M_4^2$, $ M_6M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_6$, $ M_4M_7$, $ M_3M_4$, $ M_6\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_7^2$, $ M_5M_6$, $ M_4\phi_1^2$, $ M_3M_7$, $ M_4M_5$, $ M_3^2$, $ M_7\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2M_6$, $ M_5M_7$, $ M_3\phi_1^2$, $ M_2M_4$, $ M_3M_5$, $ \phi_1^4$, $ M_5\phi_1^2$, $ M_2M_7$, $ M_5^2$, $ M_2\phi_1^2$, $ M_1M_6$, $ M_2M_5$, $ M_1M_7$, $ M_2^2$ | . | -2 | t^2.17 + t^2.27 + t^2.42 + t^2.52 + t^2.62 + t^2.72 + t^2.96 + t^3.48 + t^4.07 + t^4.25 + 2*t^4.35 + t^4.45 + t^4.55 + 2*t^4.59 + 2*t^4.69 + 2*t^4.79 + t^4.83 + 2*t^4.89 + t^4.93 + t^4.99 + 2*t^5.04 + t^5.11 + 3*t^5.14 + 2*t^5.24 + t^5.34 + t^5.38 + t^5.44 + t^5.58 + t^5.66 + t^5.68 + t^5.9 + t^5.93 - 2*t^6. + t^6.2 + t^6.42 + t^6.49 + 2*t^6.52 - t^6.55 + t^6.59 + 2*t^6.62 + t^6.66 + t^6.69 + t^6.72 + 2*t^6.76 + t^6.82 + 3*t^6.86 + 4*t^6.96 + 2*t^7.01 + t^7.03 + 3*t^7.07 + 2*t^7.11 + 2*t^7.17 + 3*t^7.21 + t^7.25 + t^7.27 + t^7.28 + 4*t^7.31 + t^7.35 + t^7.38 + 4*t^7.41 + t^7.45 + 3*t^7.51 + t^7.53 + 4*t^7.55 + 2*t^7.61 + 2*t^7.65 + t^7.71 + t^7.73 + 3*t^7.75 + t^7.8 + t^7.83 + 4*t^7.86 + 2*t^7.96 - t^7.97 + t^8. + t^8.06 + 2*t^8.1 + t^8.14 + t^8.16 - 4*t^8.17 + 2*t^8.2 - 3*t^8.27 + t^8.3 + t^8.32 + t^8.34 + t^8.4 - 3*t^8.42 - 3*t^8.52 + t^8.54 + 2*t^8.59 - 2*t^8.62 + t^8.65 + t^8.66 + 2*t^8.69 - 4*t^8.72 + 2*t^8.79 - t^8.82 + t^8.83 + 3*t^8.89 + t^8.9 + t^8.92 + t^8.94 - 4*t^8.96 - t^4.31/y - t^6.48/y - t^6.58/y - t^6.73/y - t^6.93/y - t^7.03/y - t^7.27/y + t^7.35/y + t^7.45/y + (2*t^7.59)/y + (3*t^7.69)/y + (2*t^7.79)/y + (3*t^7.89)/y + t^7.93/y + t^7.99/y + (2*t^8.04)/y + (4*t^8.14)/y + (2*t^8.24)/y + t^8.34/y + t^8.38/y + t^8.48/y + t^8.58/y + t^8.68/y - t^8.86/y - t^4.31*y - t^6.48*y - t^6.58*y - t^6.73*y - t^6.93*y - t^7.03*y - t^7.27*y + t^7.35*y + t^7.45*y + 2*t^7.59*y + 3*t^7.69*y + 2*t^7.79*y + 3*t^7.89*y + t^7.93*y + t^7.99*y + 2*t^8.04*y + 4*t^8.14*y + 2*t^8.24*y + t^8.34*y + t^8.38*y + t^8.48*y + t^8.58*y + t^8.68*y - t^8.86*y | (g1*t^2.17)/g2^5 + (g1^2*t^2.27)/g2^16 + (g2^18*t^2.42)/g1^2 + (g2^7*t^2.52)/g1 + t^2.62/g2^4 + (g1*t^2.72)/g2^15 + (g2^8*t^2.96)/g1^2 + (g1*t^3.48)/g2^7 + (g2^28*t^4.07)/g1^4 + g1*g2*t^4.25 + (2*g1^2*t^4.35)/g2^10 + (g1^3*t^4.45)/g2^21 + (g1^4*t^4.55)/g2^32 + (2*g2^13*t^4.59)/g1 + 2*g2^2*t^4.69 + (2*g1*t^4.79)/g2^9 + (g2^36*t^4.83)/g1^4 + (2*g1^2*t^4.89)/g2^20 + (g2^25*t^4.93)/g1^3 + (g1^3*t^4.99)/g2^31 + (2*g2^14*t^5.04)/g1^2 + (g1^2*t^5.11)/g2^2 + (3*g2^3*t^5.14)/g1 + (2*t^5.24)/g2^8 + (g1*t^5.34)/g2^19 + (g2^26*t^5.38)/g1^4 + (g1^2*t^5.44)/g2^30 + (g2^4*t^5.58)/g1^2 + (g1^2*t^5.66)/g2^12 + t^5.68/(g1*g2^7) + (g2^11*t^5.9)/g1 + (g2^16*t^5.93)/g1^4 - 2*t^6. + (g1^2*t^6.2)/g2^22 + (g1^2*t^6.42)/g2^4 + (g2^46*t^6.49)/g1^6 + (2*g1^3*t^6.52)/g2^15 - t^6.55/g2^10 + (g2^35*t^6.59)/g1^5 + (2*g1^4*t^6.62)/g2^26 + (g2^19*t^6.66)/g1 + (g2^24*t^6.69)/g1^4 + (g1^5*t^6.72)/g2^37 + 2*g2^8*t^6.76 + (g1^6*t^6.82)/g2^48 + (3*g1*t^6.86)/g2^3 + (4*g1^2*t^6.96)/g2^14 + (2*g2^31*t^7.01)/g1^3 + (g2^36*t^7.03)/g1^6 + (3*g1^3*t^7.07)/g2^25 + (2*g2^20*t^7.11)/g1^2 + (2*g1^4*t^7.17)/g2^36 + (3*g2^9*t^7.21)/g1 + (g2^54*t^7.25)/g1^6 + (g1^5*t^7.27)/g2^47 + (g1^3*t^7.28)/g2^7 + (4*t^7.31)/g2^2 + (g2^43*t^7.35)/g1^5 + (g1^4*t^7.38)/g2^18 + (4*g1*t^7.41)/g2^13 + (g2^32*t^7.45)/g1^4 + (3*g1^2*t^7.51)/g2^24 + g2^16*t^7.53 + (4*g2^21*t^7.55)/g1^3 + (2*g1^3*t^7.61)/g2^35 + (2*g2^10*t^7.65)/g1^2 + (g1^4*t^7.71)/g2^46 + (g1^2*t^7.73)/g2^6 + (3*t^7.75)/(g1*g2) + (g2^44*t^7.8)/g1^6 + (g1^3*t^7.83)/g2^17 + (4*t^7.86)/g2^12 + (2*g1*t^7.96)/g2^23 - (g2^17*t^7.97)/g1 + (g2^22*t^8.)/g1^4 + (g1^2*t^8.06)/g2^34 + (2*g2^11*t^8.1)/g1^3 + (g2^56*t^8.14)/g1^8 + (g1^3*t^8.16)/g2^45 - (4*g1*t^8.17)/g2^5 + (2*t^8.2)/g1^2 - (3*g1^2*t^8.27)/g2^16 + t^8.3/(g1*g2^11) + (g2^29*t^8.32)/g1^3 + (g2^34*t^8.34)/g1^6 + t^8.4/g2^22 - (3*g2^18*t^8.42)/g1^2 - (3*g2^7*t^8.52)/g1 + (g2^12*t^8.54)/g1^4 + (2*g1^3*t^8.59)/g2^9 - (2*t^8.62)/g2^4 + (g2*t^8.65)/g1^3 + (g2^41*t^8.66)/g1^5 + (2*g1^4*t^8.69)/g2^20 - (4*g1*t^8.72)/g2^15 + (2*g1^5*t^8.79)/g2^31 - (g1^2*t^8.82)/g2^26 + g2^14*t^8.83 + (2*g1^6*t^8.89)/g2^42 + (g2^24*t^8.89)/g1^6 + (g2^64*t^8.9)/g1^8 + (g1^3*t^8.92)/g2^37 + g1*g2^3*t^8.94 - (4*g2^8*t^8.96)/g1^2 - t^4.31/(g2^2*y) - (g1*t^6.48)/(g2^7*y) - (g1^2*t^6.58)/(g2^18*y) - (g2^16*t^6.73)/(g1^2*y) - t^6.93/(g2^6*y) - (g1*t^7.03)/(g2^17*y) - (g2^6*t^7.27)/(g1^2*y) + (g1^2*t^7.35)/(g2^10*y) + (g1^3*t^7.45)/(g2^21*y) + (2*g2^13*t^7.59)/(g1*y) + (3*g2^2*t^7.69)/y + (2*g1*t^7.79)/(g2^9*y) + (3*g1^2*t^7.89)/(g2^20*y) + (g2^25*t^7.93)/(g1^3*y) + (g1^3*t^7.99)/(g2^31*y) + (2*g2^14*t^8.04)/(g1^2*y) + (4*g2^3*t^8.14)/(g1*y) + (2*t^8.24)/(g2^8*y) + (g1*t^8.34)/(g2^19*y) + (g2^26*t^8.38)/(g1^4*y) + (g2^15*t^8.48)/(g1^3*y) + (g2^4*t^8.58)/(g1^2*y) + t^8.68/(g1*g2^7*y) - (g1^4*t^8.86)/(g2^34*y) - (t^4.31*y)/g2^2 - (g1*t^6.48*y)/g2^7 - (g1^2*t^6.58*y)/g2^18 - (g2^16*t^6.73*y)/g1^2 - (t^6.93*y)/g2^6 - (g1*t^7.03*y)/g2^17 - (g2^6*t^7.27*y)/g1^2 + (g1^2*t^7.35*y)/g2^10 + (g1^3*t^7.45*y)/g2^21 + (2*g2^13*t^7.59*y)/g1 + 3*g2^2*t^7.69*y + (2*g1*t^7.79*y)/g2^9 + (3*g1^2*t^7.89*y)/g2^20 + (g2^25*t^7.93*y)/g1^3 + (g1^3*t^7.99*y)/g2^31 + (2*g2^14*t^8.04*y)/g1^2 + (4*g2^3*t^8.14*y)/g1 + (2*t^8.24*y)/g2^8 + (g1*t^8.34*y)/g2^19 + (g2^26*t^8.38*y)/g1^4 + (g2^15*t^8.48*y)/g1^3 + (g2^4*t^8.58*y)/g1^2 + (t^8.68*y)/(g1*g2^7) - (g1^4*t^8.86*y)/g2^34 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46820 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_6\phi_1q_1q_2$ | 0.6898 | 0.8671 | 0.7956 | [X:[], M:[1.1511, 0.9905, 0.8489, 0.7331, 0.8747, 0.7202], q:[0.3665, 0.4824], qb:[0.6429, 0.7846], phi:[0.4309]] | t^2.16 + t^2.2 + t^2.55 + t^2.59 + t^2.62 + t^2.97 + t^3.45 + t^3.49 + t^4.19 + t^4.28 + 2*t^4.32 + t^4.36 + t^4.4 + t^4.67 + t^4.71 + 2*t^4.75 + 2*t^4.78 + t^4.82 + t^5.09 + 2*t^5.13 + t^5.15 + 2*t^5.17 + t^5.21 + t^5.25 + t^5.56 + t^5.6 + t^5.61 + t^5.65 + t^5.69 + t^5.94 - 2*t^6. - t^4.29/y - t^4.29*y | detail |