Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55294 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_2\tilde{q}_1$ + $ M_3M_6$ + $ M_7\phi_1\tilde{q}_1^2$ 0.6726 0.8559 0.7859 [X:[1.6134], M:[0.3866, 0.7063, 1.1599, 0.8401, 0.7607, 0.8401, 0.6938], q:[0.8339, 0.7795], qb:[0.4598, 0.3803], phi:[0.3866]] [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [2, 0], [0, 3], [2, -5]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_2$, $ M_5$, $ \phi_1^2$, $ M_4$, $ M_6$, $ \phi_1\tilde{q}_2^2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_7^2$, $ M_2M_7$, $ M_2^2$, $ M_5M_7$, $ M_2M_5$, $ M_7\phi_1^2$, $ M_2\phi_1^2$, $ M_5^2$, $ M_4M_7$, $ M_6M_7$, $ M_5\phi_1^2$, $ M_2M_4$, $ M_2M_6$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_5$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_2$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ X_1$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_7\phi_1\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$, $ M_7q_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_2^2$, $ M_7\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_2^2$, $ M_5q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_2^2$, $ M_6\phi_1\tilde{q}_2^2$ $\phi_1^3\tilde{q}_1\tilde{q}_2$ -2 t^2.08 + t^2.12 + t^2.28 + t^2.32 + 2*t^2.52 + t^3.44 + t^3.64 + t^3.68 + t^4.16 + t^4.2 + t^4.24 + t^4.36 + 2*t^4.4 + t^4.44 + t^4.56 + 3*t^4.6 + 3*t^4.64 + 2*t^4.8 + 3*t^4.84 + 3*t^5.04 + t^5.52 + t^5.56 + 2*t^5.72 + 2*t^5.76 + t^5.92 + 3*t^5.96 - 2*t^6. - t^6.04 + 2*t^6.16 + t^6.2 + t^6.28 + t^6.32 + t^6.36 + t^6.44 + 2*t^6.48 + 2*t^6.52 + t^6.56 + t^6.65 + 4*t^6.68 + 4*t^6.72 + 3*t^6.76 + t^6.85 + 4*t^6.88 + 5*t^6.92 + 3*t^6.96 + 3*t^7.08 + 5*t^7.12 + 3*t^7.16 - t^7.2 + t^7.29 + 3*t^7.32 + 2*t^7.36 - 2*t^7.4 + 3*t^7.56 + t^7.64 + t^7.68 + 2*t^7.81 + 3*t^7.84 + t^7.88 + 2*t^8.01 + 4*t^8.04 - 4*t^8.12 - t^8.16 + t^8.21 + 5*t^8.24 + t^8.28 - 5*t^8.32 + t^8.33 - t^8.36 + t^8.4 + 3*t^8.44 + 5*t^8.48 - 7*t^8.52 + t^8.53 - 2*t^8.56 + 2*t^8.6 + 2*t^8.64 + 4*t^8.68 + t^8.73 + t^8.76 + 5*t^8.8 + 4*t^8.84 + 3*t^8.88 + t^8.93 + 5*t^8.97 - t^4.16/y - t^6.24/y - t^6.28/y - t^6.44/y - t^6.48/y - t^6.68/y + t^7.2/y + t^7.36/y + (2*t^7.4)/y + t^7.44/y + (3*t^7.6)/y + (3*t^7.64)/y + (2*t^7.8)/y + (3*t^7.84)/y + t^7.88/y + (2*t^8.04)/y + t^8.08/y - t^8.32/y - t^8.36/y - t^8.4/y - t^8.56/y - t^8.6/y + t^8.72/y + t^8.76/y - t^8.8/y + t^8.92/y + (3*t^8.96)/y - t^4.16*y - t^6.24*y - t^6.28*y - t^6.44*y - t^6.48*y - t^6.68*y + t^7.2*y + t^7.36*y + 2*t^7.4*y + t^7.44*y + 3*t^7.6*y + 3*t^7.64*y + 2*t^7.8*y + 3*t^7.84*y + t^7.88*y + 2*t^8.04*y + t^8.08*y - t^8.32*y - t^8.36*y - t^8.4*y - t^8.56*y - t^8.6*y + t^8.72*y + t^8.76*y - t^8.8*y + t^8.92*y + 3*t^8.96*y (g1^2*t^2.08)/g2^5 + t^2.12/g2^7 + g1^2*t^2.28 + t^2.32/g2^2 + 2*g2^3*t^2.52 + (g1^2*t^3.44)/g2 + g1^2*g2^4*t^3.64 + g2^2*t^3.68 + (g1^4*t^4.16)/g2^10 + (g1^2*t^4.2)/g2^12 + t^4.24/g2^14 + (g1^4*t^4.36)/g2^5 + (2*g1^2*t^4.4)/g2^7 + t^4.44/g2^9 + g1^4*t^4.56 + (3*g1^2*t^4.6)/g2^2 + (3*t^4.64)/g2^4 + 2*g1^2*g2^3*t^4.8 + 3*g2*t^4.84 + 3*g2^6*t^5.04 + (g1^4*t^5.52)/g2^6 + (g1^2*t^5.56)/g2^8 + (2*g1^4*t^5.72)/g2 + (2*g1^2*t^5.76)/g2^3 + g1^4*g2^4*t^5.92 + 3*g1^2*g2^2*t^5.96 - 2*t^6. - t^6.04/(g1^2*g2^2) + 2*g1^2*g2^7*t^6.16 + g2^5*t^6.2 + (g1^6*t^6.24)/g2^15 - (g2^3*t^6.24)/g1^2 + (g1^4*t^6.28)/g2^17 + (g1^2*t^6.32)/g2^19 + t^6.36/g2^21 + (g1^6*t^6.44)/g2^10 + (2*g1^4*t^6.48)/g2^12 + (2*g1^2*t^6.52)/g2^14 + t^6.56/g2^16 + (g1^6*t^6.65)/g2^5 + (4*g1^4*t^6.68)/g2^7 + (4*g1^2*t^6.72)/g2^9 + (3*t^6.76)/g2^11 + g1^6*t^6.85 + (4*g1^4*t^6.88)/g2^2 + (5*g1^2*t^6.92)/g2^4 + (3*t^6.96)/g2^6 + 3*g1^4*g2^3*t^7.08 + 5*g1^2*g2*t^7.12 + (3*t^7.16)/g2 - t^7.2/(g1^2*g2^3) + g1^4*g2^8*t^7.29 + 3*g1^2*g2^6*t^7.32 + 2*g2^4*t^7.36 - (2*g2^2*t^7.4)/g1^2 + 3*g2^9*t^7.56 + (g1^6*t^7.6)/g2^11 - (g2^7*t^7.6)/g1^2 + (g1^4*t^7.64)/g2^13 + (g1^2*t^7.68)/g2^15 + (2*g1^6*t^7.81)/g2^6 + (3*g1^4*t^7.84)/g2^8 + (g1^2*t^7.88)/g2^10 + (2*g1^6*t^8.01)/g2 + (4*g1^4*t^8.04)/g2^3 - (4*t^8.12)/g2^7 - t^8.16/(g1^2*g2^9) + g1^6*g2^4*t^8.21 + 5*g1^4*g2^2*t^8.24 + g1^2*t^8.28 - (5*t^8.32)/g2^2 + (g1^8*t^8.33)/g2^20 + (g1^6*t^8.36)/g2^22 - (2*t^8.36)/(g1^2*g2^4) + (g1^4*t^8.4)/g2^24 + (g1^2*t^8.44)/g2^26 + 2*g1^4*g2^7*t^8.44 + t^8.48/g2^28 + 4*g1^2*g2^5*t^8.48 - 7*g2^3*t^8.52 + (g1^8*t^8.53)/g2^15 + (2*g1^6*t^8.56)/g2^17 - (4*g2*t^8.56)/g1^2 + (2*g1^4*t^8.6)/g2^19 + (2*g1^2*t^8.64)/g2^21 + t^8.68/g2^23 + 3*g1^2*g2^10*t^8.68 + (g1^8*t^8.73)/g2^10 + (4*g1^6*t^8.76)/g2^12 - (3*g2^6*t^8.76)/g1^2 + (5*g1^4*t^8.8)/g2^14 + (4*g1^2*t^8.84)/g2^16 + (3*t^8.88)/g2^18 + (g1^8*t^8.93)/g2^5 + (5*g1^6*t^8.97)/g2^7 - t^4.16/(g2*y) - (g1^2*t^6.24)/(g2^6*y) - t^6.28/(g2^8*y) - (g1^2*t^6.44)/(g2*y) - t^6.48/(g2^3*y) - (g2^2*t^6.68)/y + (g1^2*t^7.2)/(g2^12*y) + (g1^4*t^7.36)/(g2^5*y) + (2*g1^2*t^7.4)/(g2^7*y) + t^7.44/(g2^9*y) + (3*g1^2*t^7.6)/(g2^2*y) + (3*t^7.64)/(g2^4*y) + (2*g1^2*g2^3*t^7.8)/y + (3*g2*t^7.84)/y + t^7.88/(g1^2*g2*y) + (2*g2^6*t^8.04)/y + (g2^4*t^8.08)/(g1^2*y) - (g1^4*t^8.32)/(g2^11*y) - (g1^2*t^8.36)/(g2^13*y) - t^8.4/(g2^15*y) - (g1^2*t^8.56)/(g2^8*y) - t^8.6/(g2^10*y) + (g1^4*t^8.72)/(g2*y) + (g1^2*t^8.76)/(g2^3*y) - t^8.8/(g2^5*y) + (g1^4*g2^4*t^8.92)/y + (3*g1^2*g2^2*t^8.96)/y - (t^4.16*y)/g2 - (g1^2*t^6.24*y)/g2^6 - (t^6.28*y)/g2^8 - (g1^2*t^6.44*y)/g2 - (t^6.48*y)/g2^3 - g2^2*t^6.68*y + (g1^2*t^7.2*y)/g2^12 + (g1^4*t^7.36*y)/g2^5 + (2*g1^2*t^7.4*y)/g2^7 + (t^7.44*y)/g2^9 + (3*g1^2*t^7.6*y)/g2^2 + (3*t^7.64*y)/g2^4 + 2*g1^2*g2^3*t^7.8*y + 3*g2*t^7.84*y + (t^7.88*y)/(g1^2*g2) + 2*g2^6*t^8.04*y + (g2^4*t^8.08*y)/g1^2 - (g1^4*t^8.32*y)/g2^11 - (g1^2*t^8.36*y)/g2^13 - (t^8.4*y)/g2^15 - (g1^2*t^8.56*y)/g2^8 - (t^8.6*y)/g2^10 + (g1^4*t^8.72*y)/g2 + (g1^2*t^8.76*y)/g2^3 - (t^8.8*y)/g2^5 + g1^4*g2^4*t^8.92*y + 3*g1^2*g2^2*t^8.96*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46982 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3M_4$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_5q_2\tilde{q}_1$ + $ M_3M_6$ 0.6521 0.8157 0.7994 [X:[1.6123], M:[0.3877, 0.7142, 1.1632, 0.8368, 0.7689, 0.8368], q:[0.8335, 0.7788], qb:[0.4523, 0.3845], phi:[0.3877]] t^2.14 + t^2.31 + t^2.33 + 2*t^2.51 + t^3.47 + t^3.65 + t^3.67 + t^3.88 + t^4.28 + t^4.45 + t^4.47 + t^4.61 + t^4.63 + 3*t^4.65 + 2*t^4.82 + 3*t^4.84 + 3*t^5.02 + t^5.61 + t^5.78 + t^5.8 + t^5.96 + 3*t^5.98 - 2*t^6. - t^4.16/y - t^4.16*y detail