Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55286 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_3M_7$ 0.7228 0.9222 0.7838 [X:[], M:[0.9709, 0.9709, 1.124, 0.6861, 0.6861, 0.6861, 0.876], q:[0.5911, 0.438], qb:[0.438, 0.781], phi:[0.438]] [X:[], M:[[1, -7], [-1, -11], [0, 4], [0, 6], [2, 10], [-2, 2], [0, -4]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_4$, $ M_5$, $ M_7$, $ \phi_1^2$, $ M_2$, $ M_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_4M_6$, $ M_4^2$, $ M_5M_6$, $ q_1\tilde{q}_2$, $ M_4M_5$, $ M_5^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_6M_7$, $ M_6\phi_1^2$, $ M_4M_7$, $ M_4\phi_1^2$, $ M_5M_7$, $ M_5\phi_1^2$, $ \phi_1q_1^2$, $ M_2M_6$, $ M_2M_4$, $ M_1M_6$, $ M_1M_4$, $ M_2M_5$, $ M_1M_5$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ M_2M_7$, $ M_2\phi_1^2$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_6q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$ . -5 3*t^2.06 + 2*t^2.63 + 2*t^2.91 + 2*t^3.66 + 7*t^4.12 + 2*t^4.4 + 6*t^4.69 + t^4.86 + 6*t^4.97 + 3*t^5.26 + 2*t^5.54 + 6*t^5.72 + 3*t^5.83 - 5*t^6. + 13*t^6.17 + 2*t^6.28 + 4*t^6.46 + 3*t^6.57 + 12*t^6.74 - 2*t^6.85 + 3*t^6.92 + 14*t^7.03 + 9*t^7.31 + t^7.49 + 4*t^7.6 + 12*t^7.77 + 12*t^7.88 - 15*t^8.06 + 2*t^8.17 + 21*t^8.23 + 2*t^8.34 + 3*t^8.45 + 8*t^8.52 - t^8.63 + 4*t^8.74 + 19*t^8.8 - 12*t^8.91 + 7*t^8.98 - t^4.31/y - (3*t^6.37)/y - t^6.94/y + (3*t^7.12)/y - (2*t^7.23)/y + (2*t^7.4)/y + (7*t^7.69)/y + (6*t^7.97)/y + (4*t^8.26)/y - (6*t^8.43)/y + (4*t^8.54)/y + (6*t^8.72)/y + t^8.83/y - t^4.31*y - 3*t^6.37*y - t^6.94*y + 3*t^7.12*y - 2*t^7.23*y + 2*t^7.4*y + 7*t^7.69*y + 6*t^7.97*y + 4*t^8.26*y - 6*t^8.43*y + 4*t^8.54*y + 6*t^8.72*y + t^8.83*y (g2^2*t^2.06)/g1^2 + g2^6*t^2.06 + g1^2*g2^10*t^2.06 + (2*t^2.63)/g2^4 + t^2.91/(g1*g2^11) + (g1*t^2.91)/g2^7 + t^3.66/(g1*g2^3) + g1*g2*t^3.66 + (g2^4*t^4.12)/g1^4 + (g2^8*t^4.12)/g1^2 + 3*g2^12*t^4.12 + g1^2*g2^16*t^4.12 + g1^4*g2^20*t^4.12 + (g2^5*t^4.4)/g1 + g1*g2^9*t^4.4 + (2*t^4.69)/(g1^2*g2^2) + 2*g2^2*t^4.69 + 2*g1^2*g2^6*t^4.69 + g2^20*t^4.86 + t^4.97/(g1^3*g2^9) + (2*t^4.97)/(g1*g2^5) + (2*g1*t^4.97)/g2 + g1^3*g2^3*t^4.97 + (3*t^5.26)/g2^8 + t^5.54/(g1*g2^15) + (g1*t^5.54)/g2^11 + t^5.72/(g1^3*g2) + (2*g2^3*t^5.72)/g1 + 2*g1*g2^7*t^5.72 + g1^3*g2^11*t^5.72 + t^5.83/(g1^2*g2^22) + t^5.83/g2^18 + (g1^2*t^5.83)/g2^14 - 3*t^6. - t^6./(g1^2*g2^4) - g1^2*g2^4*t^6. + (g2^6*t^6.17)/g1^6 + (g2^10*t^6.17)/g1^4 + (3*g2^14*t^6.17)/g1^2 + 3*g2^18*t^6.17 + 3*g1^2*g2^22*t^6.17 + g1^4*g2^26*t^6.17 + g1^6*g2^30*t^6.17 + t^6.28/(g1*g2^7) + (g1*t^6.28)/g2^3 + (g2^7*t^6.46)/g1^3 + (g2^11*t^6.46)/g1 + g1*g2^15*t^6.46 + g1^3*g2^19*t^6.46 + t^6.57/(g1^2*g2^14) + t^6.57/g2^10 + (g1^2*t^6.57)/g2^6 + (2*t^6.74)/g1^4 + (2*g2^4*t^6.74)/g1^2 + 4*g2^8*t^6.74 + 2*g1^2*g2^12*t^6.74 + 2*g1^4*g2^16*t^6.74 - t^6.85/(g1*g2^17) - (g1*t^6.85)/g2^13 + (g2^22*t^6.92)/g1^2 + g2^26*t^6.92 + g1^2*g2^30*t^6.92 + t^7.03/(g1^5*g2^7) + (2*t^7.03)/(g1^3*g2^3) + (4*g2*t^7.03)/g1 + 4*g1*g2^5*t^7.03 + 2*g1^3*g2^9*t^7.03 + g1^5*g2^13*t^7.03 + (3*t^7.31)/(g1^2*g2^6) + (3*t^7.31)/g2^2 + 3*g1^2*g2^2*t^7.31 + g2^16*t^7.49 + t^7.6/(g1^3*g2^13) + t^7.6/(g1*g2^9) + (g1*t^7.6)/g2^5 + (g1^3*t^7.6)/g2 + (g2*t^7.77)/g1^5 + (2*g2^5*t^7.77)/g1^3 + (3*g2^9*t^7.77)/g1 + 3*g1*g2^13*t^7.77 + 2*g1^3*g2^17*t^7.77 + g1^5*g2^21*t^7.77 + t^7.88/(g1^4*g2^20) + (2*t^7.88)/(g1^2*g2^16) + (6*t^7.88)/g2^12 + (2*g1^2*t^7.88)/g2^8 + (g1^4*t^7.88)/g2^4 - t^8.06/(g1^4*g2^2) - (4*g2^2*t^8.06)/g1^2 - 5*g2^6*t^8.06 - 4*g1^2*g2^10*t^8.06 - g1^4*g2^14*t^8.06 + t^8.17/(g1*g2^19) + (g1*t^8.17)/g2^15 + (g2^8*t^8.23)/g1^8 + (g2^12*t^8.23)/g1^6 + (3*g2^16*t^8.23)/g1^4 + (3*g2^20*t^8.23)/g1^2 + 5*g2^24*t^8.23 + 3*g1^2*g2^28*t^8.23 + 3*g1^4*g2^32*t^8.23 + g1^6*g2^36*t^8.23 + g1^8*g2^40*t^8.23 + t^8.34/(g1^3*g2^5) + g1^3*g2^7*t^8.34 + t^8.45/(g1^2*g2^26) + t^8.45/g2^22 + (g1^2*t^8.45)/g2^18 + (g2^9*t^8.52)/g1^5 + (g2^13*t^8.52)/g1^3 + (2*g2^17*t^8.52)/g1 + 2*g1*g2^21*t^8.52 + g1^3*g2^25*t^8.52 + g1^5*g2^29*t^8.52 + t^8.63/(g1^4*g2^12) - (3*t^8.63)/g2^4 + g1^4*g2^4*t^8.63 + t^8.74/(g1^3*g2^33) + t^8.74/(g1*g2^29) + (g1*t^8.74)/g2^25 + (g1^3*t^8.74)/g2^21 + (2*g2^2*t^8.8)/g1^6 + (2*g2^6*t^8.8)/g1^4 + (4*g2^10*t^8.8)/g1^2 + 3*g2^14*t^8.8 + 4*g1^2*g2^18*t^8.8 + 2*g1^4*g2^22*t^8.8 + 2*g1^6*g2^26*t^8.8 - (2*t^8.91)/(g1^3*g2^15) - (4*t^8.91)/(g1*g2^11) - (4*g1*t^8.91)/g2^7 - (2*g1^3*t^8.91)/g2^3 + (g2^24*t^8.98)/g1^4 + (g2^28*t^8.98)/g1^2 + 3*g2^32*t^8.98 + g1^2*g2^36*t^8.98 + g1^4*g2^40*t^8.98 - t^4.31/(g2^2*y) - t^6.37/(g1^2*y) - (g2^4*t^6.37)/y - (g1^2*g2^8*t^6.37)/y - t^6.94/(g2^6*y) + (g2^8*t^7.12)/(g1^2*y) + (g2^12*t^7.12)/y + (g1^2*g2^16*t^7.12)/y - t^7.23/(g1*g2^13*y) - (g1*t^7.23)/(g2^9*y) + (g2^5*t^7.4)/(g1*y) + (g1*g2^9*t^7.4)/y + (2*t^7.69)/(g1^2*g2^2*y) + (3*g2^2*t^7.69)/y + (2*g1^2*g2^6*t^7.69)/y + t^7.97/(g1^3*g2^9*y) + (2*t^7.97)/(g1*g2^5*y) + (2*g1*t^7.97)/(g2*y) + (g1^3*g2^3*t^7.97)/y + t^8.26/(g1^2*g2^12*y) + (2*t^8.26)/(g2^8*y) + (g1^2*t^8.26)/(g2^4*y) - (g2^2*t^8.43)/(g1^4*y) - (g2^6*t^8.43)/(g1^2*y) - (2*g2^10*t^8.43)/y - (g1^2*g2^14*t^8.43)/y - (g1^4*g2^18*t^8.43)/y + (2*t^8.54)/(g1*g2^15*y) + (2*g1*t^8.54)/(g2^11*y) + t^8.72/(g1^3*g2*y) + (2*g2^3*t^8.72)/(g1*y) + (2*g1*g2^7*t^8.72)/y + (g1^3*g2^11*t^8.72)/y + t^8.83/(g2^18*y) - (t^4.31*y)/g2^2 - (t^6.37*y)/g1^2 - g2^4*t^6.37*y - g1^2*g2^8*t^6.37*y - (t^6.94*y)/g2^6 + (g2^8*t^7.12*y)/g1^2 + g2^12*t^7.12*y + g1^2*g2^16*t^7.12*y - (t^7.23*y)/(g1*g2^13) - (g1*t^7.23*y)/g2^9 + (g2^5*t^7.4*y)/g1 + g1*g2^9*t^7.4*y + (2*t^7.69*y)/(g1^2*g2^2) + 3*g2^2*t^7.69*y + 2*g1^2*g2^6*t^7.69*y + (t^7.97*y)/(g1^3*g2^9) + (2*t^7.97*y)/(g1*g2^5) + (2*g1*t^7.97*y)/g2 + g1^3*g2^3*t^7.97*y + (t^8.26*y)/(g1^2*g2^12) + (2*t^8.26*y)/g2^8 + (g1^2*t^8.26*y)/g2^4 - (g2^2*t^8.43*y)/g1^4 - (g2^6*t^8.43*y)/g1^2 - 2*g2^10*t^8.43*y - g1^2*g2^14*t^8.43*y - g1^4*g2^18*t^8.43*y + (2*t^8.54*y)/(g1*g2^15) + (2*g1*t^8.54*y)/g2^11 + (t^8.72*y)/(g1^3*g2) + (2*g2^3*t^8.72*y)/g1 + 2*g1*g2^7*t^8.72*y + g1^3*g2^11*t^8.72*y + (t^8.83*y)/g2^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46871 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6\phi_1\tilde{q}_1^2$ 0.7119 0.9046 0.787 [X:[], M:[0.9822, 0.9822, 1.119, 0.6785, 0.6785, 0.6785], q:[0.5773, 0.4405], qb:[0.4405, 0.7798], phi:[0.4405]] 3*t^2.04 + t^2.64 + 2*t^2.95 + t^3.36 + 2*t^3.66 + 7*t^4.07 + 2*t^4.37 + 3*t^4.68 + t^4.79 + 6*t^4.98 + t^5.29 + 3*t^5.39 + 6*t^5.7 + 3*t^5.89 - 4*t^6. - t^4.32/y - t^4.32*y detail