Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55265 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1q_2^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1^2$ + $ M_2M_5$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.6409 0.8448 0.7587 [X:[], M:[0.9475, 0.8426, 0.7377, 0.9475, 1.1574, 0.7361], q:[0.7369, 0.3156], qb:[0.4205, 0.4221], phi:[0.5262]] [X:[], M:[[4], [12], [20], [4], [-12], [-18]], q:[[1], [-5]], qb:[[-13], [25]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ q_2\tilde{q}_1$, $ M_3$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_1$, $ M_4$, $ M_5$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3M_6$, $ M_3q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_1M_6$, $ M_4M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_1M_3$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_1^2$, $ M_1M_4$, $ M_4^2$, $ M_3M_5$, $ M_3\phi_1q_2^2$, $ M_6q_1\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$ $M_5\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ -3 4*t^2.21 + t^2.53 + 2*t^2.84 + 2*t^3.47 + t^3.48 + t^4.1 + 2*t^4.11 + 7*t^4.42 + 3*t^4.43 + 4*t^4.74 + 4*t^5.05 + 5*t^5.06 + 2*t^5.37 + 3*t^5.68 + 9*t^5.69 - 3*t^6. + 6*t^6.31 + 6*t^6.32 + 4*t^6.62 + 10*t^6.63 + 5*t^6.64 + 5*t^6.94 + 10*t^6.95 + 10*t^7.26 + 7*t^7.27 + 7*t^7.58 + t^7.59 + 12*t^7.89 + 14*t^7.9 - t^8.2 - 8*t^8.21 + 2*t^8.22 + 7*t^8.52 + 15*t^8.53 + 3*t^8.54 + 5*t^8.83 + 2*t^8.84 + 13*t^8.85 - t^4.58/y - (2*t^6.79)/y + (4*t^7.42)/y + t^7.43/y + (5*t^7.74)/y + (4*t^8.05)/y + (4*t^8.06)/y + (4*t^8.37)/y + (4*t^8.68)/y + (9*t^8.69)/y - t^4.58*y - 2*t^6.79*y + 4*t^7.42*y + t^7.43*y + 5*t^7.74*y + 4*t^8.05*y + 4*t^8.06*y + 4*t^8.37*y + 4*t^8.68*y + 9*t^8.69*y (2*t^2.21)/g1^18 + 2*g1^20*t^2.21 + g1^12*t^2.53 + 2*g1^4*t^2.84 + (2*t^3.47)/g1^12 + g1^26*t^3.48 + t^4.1/g1^28 + g1^10*t^4.11 + g1^48*t^4.11 + (3*t^4.42)/g1^36 + 4*g1^2*t^4.42 + 3*g1^40*t^4.43 + (2*t^4.74)/g1^6 + 2*g1^32*t^4.74 + (4*t^5.05)/g1^14 + 5*g1^24*t^5.06 + 2*g1^16*t^5.37 + (3*t^5.68)/g1^30 + 7*g1^8*t^5.69 + 2*g1^46*t^5.69 - 2*t^6. - t^6./g1^38 + (2*t^6.31)/g1^46 + (4*t^6.31)/g1^8 + 4*g1^30*t^6.32 + 2*g1^68*t^6.32 + (4*t^6.62)/g1^54 + (5*t^6.63)/g1^16 + 5*g1^22*t^6.63 + 5*g1^60*t^6.64 + (5*t^6.94)/g1^24 + 5*g1^14*t^6.95 + 5*g1^52*t^6.95 + (4*t^7.26)/g1^32 + 6*g1^6*t^7.26 + 7*g1^44*t^7.27 + (2*t^7.58)/g1^2 + 5*g1^36*t^7.58 + g1^74*t^7.59 + (4*t^7.89)/g1^48 + (8*t^7.89)/g1^10 + 11*g1^28*t^7.9 + 3*g1^66*t^7.9 - t^8.2/g1^56 - (6*t^8.21)/g1^18 - 2*g1^20*t^8.21 + g1^58*t^8.22 + g1^96*t^8.22 + (3*t^8.52)/g1^64 + (4*t^8.52)/g1^26 + 8*g1^12*t^8.53 + 7*g1^50*t^8.53 + 3*g1^88*t^8.54 + (5*t^8.83)/g1^72 + (4*t^8.84)/g1^34 - 2*g1^4*t^8.84 + 6*g1^42*t^8.85 + 7*g1^80*t^8.85 - t^4.58/(g1^2*y) - t^6.79/(g1^20*y) - (g1^18*t^6.79)/y + t^7.42/(g1^36*y) + (3*g1^2*t^7.42)/y + (g1^40*t^7.43)/y + (3*t^7.74)/(g1^6*y) + (2*g1^32*t^7.74)/y + (4*t^8.05)/(g1^14*y) + (4*g1^24*t^8.06)/y + t^8.37/(g1^22*y) + (3*g1^16*t^8.37)/y + (4*t^8.68)/(g1^30*y) + (7*g1^8*t^8.69)/y + (2*g1^46*t^8.69)/y - (t^4.58*y)/g1^2 - (t^6.79*y)/g1^20 - g1^18*t^6.79*y + (t^7.42*y)/g1^36 + 3*g1^2*t^7.42*y + g1^40*t^7.43*y + (3*t^7.74*y)/g1^6 + 2*g1^32*t^7.74*y + (4*t^8.05*y)/g1^14 + 4*g1^24*t^8.06*y + (t^8.37*y)/g1^22 + 3*g1^16*t^8.37*y + (4*t^8.68*y)/g1^30 + 7*g1^8*t^8.69*y + 2*g1^46*t^8.69*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47023 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1q_2^2$ + $ M_3\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1^2$ + $ M_2M_5$ 0.6215 0.8097 0.7675 [X:[], M:[0.9461, 0.8384, 0.7307, 0.9461, 1.1616], q:[0.7365, 0.3173], qb:[0.4251, 0.4134], phi:[0.5269]] 2*t^2.19 + t^2.23 + t^2.52 + 2*t^2.84 + t^3.45 + 2*t^3.48 + t^3.77 + t^4.06 + t^4.1 + t^4.13 + 3*t^4.38 + 2*t^4.42 + t^4.45 + 2*t^4.71 + t^4.74 + 5*t^5.03 + 2*t^5.07 + 2*t^5.35 + 2*t^5.64 + 6*t^5.68 + t^5.71 + 2*t^5.96 - t^6. - t^4.58/y - t^4.58*y detail