Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55258 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$ 0.7198 0.9129 0.7884 [M:[0.9768, 0.9666, 1.1237, 0.6855, 0.8763, 0.6958, 0.7758], q:[0.5902, 0.433], qb:[0.4433, 0.7809], phi:[0.4382]] [M:[[1, -7], [-1, -11], [0, 4], [0, 6], [0, -4], [2, 10], [-1, -1]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{6}$, ${ }M_{7}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$ ${}$ -3 t^2.057 + t^2.087 + t^2.327 + 2*t^2.629 + t^2.9 + t^2.93 + t^3.642 + t^3.974 + 2*t^4.113 + t^4.144 + t^4.175 + 2*t^4.384 + 2*t^4.415 + t^4.655 + 2*t^4.686 + 2*t^4.716 + t^4.855 + 3*t^4.956 + 2*t^4.987 + t^5.018 + t^5.227 + 4*t^5.258 + t^5.529 + t^5.559 + t^5.698 + t^5.729 + t^5.799 + t^5.83 + t^5.861 - 3*t^6. + t^6.062 + 2*t^6.17 + 2*t^6.201 + t^6.232 + t^6.262 + t^6.271 + 2*t^6.441 + 2*t^6.471 + 2*t^6.502 + t^6.541 + 2*t^6.603 + 2*t^6.711 + 4*t^6.742 + 2*t^6.773 + 2*t^6.804 - t^6.843 + t^6.905 + t^6.912 + t^6.943 + t^6.982 + 4*t^7.013 + 5*t^7.044 + 2*t^7.075 + t^7.105 + t^7.183 + 3*t^7.284 + 4*t^7.314 + 3*t^7.345 + t^7.484 + t^7.554 + 4*t^7.585 + 2*t^7.616 + t^7.647 + t^7.755 + t^7.817 + 2*t^7.856 + 6*t^7.887 + 2*t^7.918 + 2*t^7.948 - 4*t^8.057 - 3*t^8.087 + t^8.127 + t^8.149 + 2*t^8.157 + 2*t^8.188 + 2*t^8.226 + 2*t^8.257 + 2*t^8.288 + t^8.319 - 4*t^8.327 + t^8.35 - t^8.358 + t^8.389 + t^8.428 + t^8.459 + t^8.49 + 3*t^8.497 + 2*t^8.528 + 2*t^8.559 + 2*t^8.59 - 5*t^8.629 + 2*t^8.691 + t^8.699 + t^8.73 + t^8.761 + 2*t^8.768 + t^8.791 + 3*t^8.799 + 5*t^8.83 + 2*t^8.86 + 2*t^8.891 - 3*t^8.9 - 4*t^8.93 + 2*t^8.969 + t^8.992 + t^8.999 - t^4.314/y - t^6.371/y - t^6.402/y - t^6.642/y - t^6.943/y + t^7.144/y - t^7.214/y - t^7.245/y + (2*t^7.384)/y + (2*t^7.415)/y + (3*t^7.686)/y + (2*t^7.716)/y + (3*t^7.956)/y + (3*t^7.987)/y + t^8.018/y + (2*t^8.227)/y + (3*t^8.258)/y - t^8.428/y - t^8.459/y - t^8.489/y + (2*t^8.529)/y + (2*t^8.559)/y + t^8.83/y - t^4.314*y - t^6.371*y - t^6.402*y - t^6.642*y - t^6.943*y + t^7.144*y - t^7.214*y - t^7.245*y + 2*t^7.384*y + 2*t^7.415*y + 3*t^7.686*y + 2*t^7.716*y + 3*t^7.956*y + 3*t^7.987*y + t^8.018*y + 2*t^8.227*y + 3*t^8.258*y - t^8.428*y - t^8.459*y - t^8.489*y + 2*t^8.529*y + 2*t^8.559*y + t^8.83*y g2^6*t^2.057 + g1^2*g2^10*t^2.087 + t^2.327/(g1*g2) + (2*t^2.629)/g2^4 + t^2.9/(g1*g2^11) + (g1*t^2.93)/g2^7 + t^3.642/(g1*g2^3) + (g1^2*t^3.974)/g2^2 + 2*g2^12*t^4.113 + g1^2*g2^16*t^4.144 + g1^4*g2^20*t^4.175 + (2*g2^5*t^4.384)/g1 + 2*g1*g2^9*t^4.415 + t^4.655/(g1^2*g2^2) + 2*g2^2*t^4.686 + 2*g1^2*g2^6*t^4.716 + g2^20*t^4.855 + (3*t^4.956)/(g1*g2^5) + (2*g1*t^4.987)/g2 + g1^3*g2^3*t^5.018 + t^5.227/(g1^2*g2^12) + (4*t^5.258)/g2^8 + t^5.529/(g1*g2^15) + (g1*t^5.559)/g2^11 + (g2^3*t^5.698)/g1 + g1*g2^7*t^5.729 + t^5.799/(g1^2*g2^22) + t^5.83/g2^18 + (g1^2*t^5.861)/g2^14 - 3*t^6. + g1^4*g2^8*t^6.062 + 2*g2^18*t^6.17 + 2*g1^2*g2^22*t^6.201 + g1^4*g2^26*t^6.232 + g1^6*g2^30*t^6.262 + t^6.271/(g1*g2^7) + (2*g2^11*t^6.441)/g1 + 2*g1*g2^15*t^6.471 + 2*g1^3*g2^19*t^6.502 + t^6.541/(g1^2*g2^14) + (2*g1^2*t^6.603)/g2^6 + (2*g2^4*t^6.711)/g1^2 + 4*g2^8*t^6.742 + 2*g1^2*g2^12*t^6.773 + 2*g1^4*g2^16*t^6.804 - t^6.843/(g1*g2^17) + (g1^3*t^6.905)/g2^9 + g2^26*t^6.912 + g1^2*g2^30*t^6.943 + t^6.982/(g1^3*g2^3) + (4*g2*t^7.013)/g1 + 5*g1*g2^5*t^7.044 + 2*g1^3*g2^9*t^7.075 + g1^5*g2^13*t^7.105 + (g2^19*t^7.183)/g1 + (3*t^7.284)/(g1^2*g2^6) + (4*t^7.314)/g2^2 + 3*g1^2*g2^2*t^7.345 + g2^16*t^7.484 + t^7.554/(g1^3*g2^13) + (4*t^7.585)/(g1*g2^9) + (2*g1*t^7.616)/g2^5 + (g1^3*t^7.647)/g2 + (g2^9*t^7.755)/g1 + g1^3*g2^17*t^7.817 + (2*t^7.856)/(g1^2*g2^16) + (6*t^7.887)/g2^12 + (2*g1^2*t^7.918)/g2^8 + (2*g1^4*t^7.948)/g2^4 - 4*g2^6*t^8.057 - 3*g1^2*g2^10*t^8.087 + t^8.127/(g1^3*g2^23) + g1^6*g2^18*t^8.149 + (2*t^8.157)/(g1*g2^19) + (2*g1*t^8.188)/g2^15 + 2*g2^24*t^8.226 + 2*g1^2*g2^28*t^8.257 + 2*g1^4*g2^32*t^8.288 + g1^6*g2^36*t^8.319 - (4*t^8.327)/(g1*g2) + g1^8*g2^40*t^8.35 - g1*g2^3*t^8.358 + g1^3*g2^7*t^8.389 + t^8.428/(g1^2*g2^26) + t^8.459/g2^22 + (g1^2*t^8.49)/g2^18 + (3*g2^17*t^8.497)/g1 + 2*g1*g2^21*t^8.528 + 2*g1^3*g2^25*t^8.559 + 2*g1^5*g2^29*t^8.59 - (5*t^8.629)/g2^4 + 2*g1^4*g2^4*t^8.691 + t^8.699/(g1^3*g2^33) + t^8.73/(g1*g2^29) + (g1*t^8.761)/g2^25 + (2*g2^10*t^8.768)/g1^2 + (g1^3*t^8.791)/g2^21 + 3*g2^14*t^8.799 + 5*g1^2*g2^18*t^8.83 + 2*g1^4*g2^22*t^8.86 + 2*g1^6*g2^26*t^8.891 - (3*t^8.9)/(g1*g2^11) - (4*g1*t^8.93)/g2^7 + 2*g2^32*t^8.969 + g1^5*g2*t^8.992 + g1^2*g2^36*t^8.999 - t^4.314/(g2^2*y) - (g2^4*t^6.371)/y - (g1^2*g2^8*t^6.402)/y - t^6.642/(g1*g2^3*y) - t^6.943/(g2^6*y) + (g1^2*g2^16*t^7.144)/y - t^7.214/(g1*g2^13*y) - (g1*t^7.245)/(g2^9*y) + (2*g2^5*t^7.384)/(g1*y) + (2*g1*g2^9*t^7.415)/y + (3*g2^2*t^7.686)/y + (2*g1^2*g2^6*t^7.716)/y + (3*t^7.956)/(g1*g2^5*y) + (3*g1*t^7.987)/(g2*y) + (g1^3*g2^3*t^8.018)/y + (2*t^8.227)/(g1^2*g2^12*y) + (3*t^8.258)/(g2^8*y) - (g2^10*t^8.428)/y - (g1^2*g2^14*t^8.459)/y - (g1^4*g2^18*t^8.489)/y + (2*t^8.529)/(g1*g2^15*y) + (2*g1*t^8.559)/(g2^11*y) + t^8.83/(g2^18*y) - (t^4.314*y)/g2^2 - g2^4*t^6.371*y - g1^2*g2^8*t^6.402*y - (t^6.642*y)/(g1*g2^3) - (t^6.943*y)/g2^6 + g1^2*g2^16*t^7.144*y - (t^7.214*y)/(g1*g2^13) - (g1*t^7.245*y)/g2^9 + (2*g2^5*t^7.384*y)/g1 + 2*g1*g2^9*t^7.415*y + 3*g2^2*t^7.686*y + 2*g1^2*g2^6*t^7.716*y + (3*t^7.956*y)/(g1*g2^5) + (3*g1*t^7.987*y)/g2 + g1^3*g2^3*t^8.018*y + (2*t^8.227*y)/(g1^2*g2^12) + (3*t^8.258*y)/g2^8 - g2^10*t^8.428*y - g1^2*g2^14*t^8.459*y - g1^4*g2^18*t^8.489*y + (2*t^8.529*y)/(g1*g2^15) + (2*g1*t^8.559*y)/g2^11 + (t^8.83*y)/g2^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47043 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.7021 0.8823 0.7958 [M:[0.9637, 0.9715, 1.1255, 0.6883, 0.8745, 0.6805], q:[0.5951, 0.4411], qb:[0.4334, 0.7814], phi:[0.4372]] t^2.041 + t^2.065 + 2*t^2.623 + t^2.891 + t^2.915 + t^3.644 + t^3.668 + t^3.912 + t^4.083 + t^4.106 + 2*t^4.13 + t^4.397 + t^4.421 + 2*t^4.665 + 2*t^4.688 + t^4.883 + t^4.933 + 2*t^4.956 + t^4.979 + 3*t^5.247 + t^5.515 + t^5.538 + t^5.686 + 2*t^5.709 + t^5.732 + t^5.782 + t^5.806 + t^5.829 + t^5.953 - 3*t^6. - t^4.312/y - t^4.312*y detail