Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55187 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ M_3\phi_1q_2^2$ + $ M_4\phi_1^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.661 0.8975 0.7365 [X:[], M:[0.9187, 0.9187, 0.7562, 0.9187, 0.7032, 0.7032], q:[0.7297, 0.3516], qb:[0.3516, 0.4046], phi:[0.5406]] [X:[], M:[[4], [4], [12], [4], [-10], [-10]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ M_3$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_1$, $ M_2$, $ M_4$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3M_5$, $ M_3M_6$, $ M_3q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_3^2$, $ M_3q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1M_5$, $ M_2M_5$, $ M_4M_5$, $ M_1M_6$, $ M_2M_6$, $ M_4M_6$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_1M_3$, $ M_2M_3$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1M_4$, $ M_2M_4$, $ M_4^2$, $ M_5q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_1\tilde{q}_1\tilde{q}_2^2$, $ M_6\phi_1q_2\tilde{q}_1$, $ M_6\phi_1\tilde{q}_1^2$, $ \phi_1q_2^2\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ $M_3\phi_1q_2\tilde{q}_1$, $ M_3\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$, $ \phi_1\tilde{q}_1^3\tilde{q}_2$ -1 3*t^2.11 + 3*t^2.27 + 3*t^2.76 + t^3.4 + 2*t^3.73 + t^4.05 + 6*t^4.22 + 9*t^4.38 + 6*t^4.54 + 9*t^4.87 + 9*t^5.02 + 8*t^5.51 + 3*t^5.67 + 4*t^5.84 - t^6. + 3*t^6.16 + 3*t^6.32 + 10*t^6.33 + 19*t^6.49 + 15*t^6.65 + 13*t^6.81 + 15*t^6.98 + 23*t^7.13 + 16*t^7.29 + t^7.45 + 13*t^7.62 + 20*t^7.78 + 6*t^7.94 + 6*t^7.95 + t^8.1 - 9*t^8.11 + 4*t^8.27 + 9*t^8.43 + 15*t^8.44 + 6*t^8.59 + 27*t^8.6 + 11*t^8.76 + 27*t^8.92 - t^4.62/y - (2*t^6.73)/y - t^6.89/y + (3*t^7.22)/y + (7*t^7.38)/y + (3*t^7.54)/y + (11*t^7.87)/y + (9*t^8.02)/y + t^8.35/y + (8*t^8.51)/y + (3*t^8.67)/y + (3*t^8.84)/y - t^4.62*y - 2*t^6.73*y - t^6.89*y + 3*t^7.22*y + 7*t^7.38*y + 3*t^7.54*y + 11*t^7.87*y + 9*t^8.02*y + t^8.35*y + 8*t^8.51*y + 3*t^8.67*y + 3*t^8.84*y (3*t^2.11)/g1^10 + 3*g1^12*t^2.27 + 3*g1^4*t^2.76 + g1^18*t^3.4 + (2*t^3.73)/g1^12 + g1^32*t^4.05 + (6*t^4.22)/g1^20 + 9*g1^2*t^4.38 + 6*g1^24*t^4.54 + (9*t^4.87)/g1^6 + 9*g1^16*t^5.02 + 8*g1^8*t^5.51 + 3*g1^30*t^5.67 + (4*t^5.84)/g1^22 - t^6. + 3*g1^22*t^6.16 + 3*g1^44*t^6.32 + (10*t^6.33)/g1^30 + (19*t^6.49)/g1^8 + 15*g1^14*t^6.65 + 13*g1^36*t^6.81 + (15*t^6.98)/g1^16 + 23*g1^6*t^7.13 + 16*g1^28*t^7.29 + g1^50*t^7.45 + (13*t^7.62)/g1^2 + 20*g1^20*t^7.78 + 6*g1^42*t^7.94 + (6*t^7.95)/g1^32 + g1^64*t^8.1 - (9*t^8.11)/g1^10 + 4*g1^12*t^8.27 + 9*g1^34*t^8.43 + (15*t^8.44)/g1^40 + 6*g1^56*t^8.59 + (27*t^8.6)/g1^18 + 11*g1^4*t^8.76 + 27*g1^26*t^8.92 - t^4.62/(g1^2*y) - (2*t^6.73)/(g1^12*y) - (g1^10*t^6.89)/y + (3*t^7.22)/(g1^20*y) + (7*g1^2*t^7.38)/y + (3*g1^24*t^7.54)/y + (11*t^7.87)/(g1^6*y) + (9*g1^16*t^8.02)/y + t^8.35/(g1^14*y) + (8*g1^8*t^8.51)/y + (3*g1^30*t^8.67)/y + (3*t^8.84)/(g1^22*y) - (t^4.62*y)/g1^2 - (2*t^6.73*y)/g1^12 - g1^10*t^6.89*y + (3*t^7.22*y)/g1^20 + 7*g1^2*t^7.38*y + 3*g1^24*t^7.54*y + (11*t^7.87*y)/g1^6 + 9*g1^16*t^8.02*y + (t^8.35*y)/g1^14 + 8*g1^8*t^8.51*y + 3*g1^30*t^8.67*y + (3*t^8.84*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46810 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ M_3\phi_1q_2^2$ + $ M_4\phi_1^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ 0.6405 0.8589 0.7458 [X:[], M:[0.9178, 0.9178, 0.7533, 0.9178, 0.7056], q:[0.7294, 0.3528], qb:[0.3528, 0.4006], phi:[0.5411]] 2*t^2.12 + 3*t^2.26 + 3*t^2.75 + t^3.39 + 2*t^3.74 + t^3.88 + t^4.03 + 3*t^4.23 + 6*t^4.38 + 6*t^4.52 + 6*t^4.87 + 9*t^5.01 + 7*t^5.51 + 3*t^5.65 + 2*t^5.86 + t^6. - t^4.62/y - t^4.62*y detail