Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55160 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_6\phi_1^2$ + $ M_1M_2$ + $ M_7\phi_1^2$ 0.7141 0.8795 0.8119 [X:[], M:[1.0, 1.0, 0.8824, 0.8824, 0.8237, 1.0588, 1.0588], q:[0.5294, 0.4706], qb:[0.4706, 0.6469], phi:[0.4706]] [X:[], M:[[1, 1], [-1, -1], [-1, -5], [1, -3], [0, -6], [0, 2], [0, 2]], q:[[0, 1], [-1, -2]], qb:[[1, 0], [0, 5]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_3$, $ M_4$, $ M_2$, $ M_1$, $ M_6$, $ M_7$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_5$, $ M_4M_5$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ M_1M_3$, $ M_2M_4$, $ M_5M_6$, $ M_5M_7$, $ M_1M_4$, $ M_3M_6$, $ M_3M_7$, $ M_4M_6$, $ M_4M_7$ $M_1^2$, $ M_2^2$ -3 t^2.47 + 2*t^2.65 + 2*t^3. + 2*t^3.18 + 3*t^4.24 + 2*t^4.41 + t^4.59 + 2*t^4.76 + 2*t^4.94 + 2*t^5.12 + 4*t^5.29 + 5*t^5.65 + 2*t^5.82 - 3*t^6. + 2*t^6.18 + t^6.35 - 2*t^6.53 + 3*t^6.71 + 6*t^6.88 + 4*t^7.06 + 6*t^7.24 + 7*t^7.41 + 4*t^7.59 + 3*t^7.77 + 6*t^7.94 + 2*t^8.12 + 6*t^8.29 + 3*t^8.47 - 4*t^8.65 + 4*t^8.82 - t^4.41/y - t^6.88/y - (2*t^7.06)/y + t^7.24/y - t^7.59/y + (2*t^7.76)/y + t^7.94/y + (2*t^8.12)/y + t^8.29/y + (2*t^8.47)/y + (6*t^8.65)/y + (4*t^8.82)/y - t^4.41*y - t^6.88*y - 2*t^7.06*y + t^7.24*y - t^7.59*y + 2*t^7.76*y + t^7.94*y + 2*t^8.12*y + t^8.29*y + 2*t^8.47*y + 6*t^8.65*y + 4*t^8.82*y t^2.47/g2^6 + t^2.65/(g1*g2^5) + (g1*t^2.65)/g2^3 + t^3./(g1*g2) + g1*g2*t^3. + 2*g2^2*t^3.18 + t^4.24/(g1^2*g2^5) + t^4.24/g2^3 + (g1^2*t^4.24)/g2 + g1*t^4.41 + t^4.41/(g1*g2^2) + g2*t^4.59 + (g2^2*t^4.76)/g1 + g1*g2^4*t^4.76 + t^4.94/g2^12 + g2^5*t^4.94 + t^5.12/(g1*g2^11) + (g1*t^5.12)/g2^9 + t^5.29/(g1^2*g2^10) + t^5.29/g2^8 + (g1^2*t^5.29)/g2^6 + g2^9*t^5.29 + t^5.65/(g1^2*g2^6) + (3*t^5.65)/g2^4 + (g1^2*t^5.65)/g2^2 + t^5.82/(g1*g2^3) + (g1*t^5.82)/g2 - 3*t^6. + (g2*t^6.18)/g1 + g1*g2^3*t^6.18 + g2^4*t^6.35 - (g2^5*t^6.53)/g1 - g1*g2^7*t^6.53 + t^6.71/(g1^2*g2^11) + t^6.71/g2^9 + (g1^2*t^6.71)/g2^7 + t^6.88/(g1^3*g2^10) + (2*t^6.88)/(g1*g2^8) + (2*g1*t^6.88)/g2^6 + (g1^3*t^6.88)/g2^4 + t^7.06/(g1^2*g2^7) + (2*t^7.06)/g2^5 + (g1^2*t^7.06)/g2^3 + g1^3*t^7.24 + t^7.24/(g1^3*g2^6) + (2*t^7.24)/(g1*g2^4) + (2*g1*t^7.24)/g2^2 + t^7.41/g2^18 + (2*t^7.41)/(g1^2*g2^3) + (2*t^7.41)/g2 + 2*g1^2*g2*t^7.41 + t^7.59/g1 + t^7.59/(g1*g2^17) + (g1*t^7.59)/g2^15 + g1*g2^2*t^7.59 + t^7.77/(g1^2*g2^16) + t^7.77/g2^14 + (g1^2*t^7.77)/g2^12 + t^7.94/(g1^3*g2^15) + t^7.94/(g1*g2^13) + (g1*t^7.94)/g2^11 + (g1^3*t^7.94)/g2^9 + (g2^4*t^7.94)/g1 + g1*g2^6*t^7.94 + (2*t^8.12)/g2^10 + t^8.29/(g1^3*g2^11) + (2*t^8.29)/(g1*g2^9) + (2*g1*t^8.29)/g2^7 + (g1^3*t^8.29)/g2^5 + t^8.47/(g1^4*g2^10) + t^8.47/(g1^2*g2^8) - (2*t^8.47)/g2^6 + (g1^2*t^8.47)/g2^4 + (g1^4*t^8.47)/g2^2 + g2^11*t^8.47 + t^8.65/(g1^3*g2^7) - (3*t^8.65)/(g1*g2^5) - (3*g1*t^8.65)/g2^3 + (g1^3*t^8.65)/g2 + g1^2*t^8.82 + t^8.82/(g1^2*g2^4) + (2*t^8.82)/g2^2 - t^4.41/(g2*y) - t^6.88/(g2^7*y) - t^7.06/(g1*g2^6*y) - (g1*t^7.06)/(g2^4*y) + t^7.24/(g2^3*y) - (g2*t^7.59)/y + (g2^2*t^7.76)/(g1*y) + (g1*g2^4*t^7.76)/y + (g2^5*t^7.94)/y + t^8.12/(g1*g2^11*y) + (g1*t^8.12)/(g2^9*y) + t^8.29/(g2^8*y) + t^8.47/(g1*g2^7*y) + (g1*t^8.47)/(g2^5*y) + t^8.65/(g1^2*g2^6*y) + (4*t^8.65)/(g2^4*y) + (g1^2*t^8.65)/(g2^2*y) + (2*t^8.82)/(g1*g2^3*y) + (2*g1*t^8.82)/(g2*y) - (t^4.41*y)/g2 - (t^6.88*y)/g2^7 - (t^7.06*y)/(g1*g2^6) - (g1*t^7.06*y)/g2^4 + (t^7.24*y)/g2^3 - g2*t^7.59*y + (g2^2*t^7.76*y)/g1 + g1*g2^4*t^7.76*y + g2^5*t^7.94*y + (t^8.12*y)/(g1*g2^11) + (g1*t^8.12*y)/g2^9 + (t^8.29*y)/g2^8 + (t^8.47*y)/(g1*g2^7) + (g1*t^8.47*y)/g2^5 + (t^8.65*y)/(g1^2*g2^6) + (4*t^8.65*y)/g2^4 + (g1^2*t^8.65*y)/g2^2 + (2*t^8.82*y)/(g1*g2^3) + (2*g1*t^8.82*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46905 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_6\phi_1^2$ + $ M_1M_2$ 0.7198 0.8904 0.8084 [X:[], M:[1.0, 1.0, 0.8691, 0.8691, 0.8037, 1.0654], q:[0.5327, 0.4673], qb:[0.4673, 0.6636], phi:[0.4673]] t^2.41 + 2*t^2.61 + t^2.8 + 2*t^3. + t^3.2 + 3*t^4.21 + 2*t^4.4 + t^4.6 + 2*t^4.79 + t^4.82 + t^4.99 + 2*t^5.02 + 4*t^5.21 + t^5.38 + 2*t^5.41 + 5*t^5.61 + 2*t^5.8 - 2*t^6. - t^4.4/y - t^4.4*y detail