Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55089 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2X_1$ + $ M_4\phi_1q_1q_2$ + $ M_5\phi_1q_1^2$ + $ M_6q_1\tilde{q}_1$ + $ M_7q_2\tilde{q}_2$ | 0.6642 | 0.8417 | 0.7891 | [X:[1.6], M:[1.2, 0.4, 0.8, 0.8, 0.7599, 0.7866, 0.8134], q:[0.42, 0.38], qb:[0.7933, 0.8067], phi:[0.4]] | [X:[[0, 0]], M:[[0, 0], [0, 0], [0, 0], [0, 0], [2, 0], [1, 1], [-1, -1]], q:[[-1, 0], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_6$, $ M_3$, $ M_4$, $ \phi_1^2$, $ M_7$, $ \phi_1q_2^2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_5^2$, $ M_5M_6$, $ M_3M_5$, $ M_4M_5$, $ M_5\phi_1^2$, $ M_5M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_6^2$, $ M_3M_6$, $ M_4M_6$, $ M_6\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_6M_7$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ \phi_1^4$, $ X_1$, $ M_3M_7$, $ M_4M_7$, $ M_7\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_7^2$, $ M_5\phi_1q_2^2$, $ M_5q_2\tilde{q}_1$, $ M_6\phi_1q_2^2$, $ M_3\phi_1q_2^2$, $ M_4\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_6q_2\tilde{q}_1$, $ M_7\phi_1q_2^2$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$ | . | -3 | t^2.28 + t^2.36 + 3*t^2.4 + t^2.44 + t^3.48 + t^3.52 + t^3.68 + t^4.56 + t^4.64 + 3*t^4.68 + 2*t^4.72 + 3*t^4.76 + 8*t^4.8 + 3*t^4.84 + t^4.88 + t^5.76 + t^5.8 + t^5.84 + 3*t^5.88 + 3*t^5.92 + t^5.96 - 3*t^6. + 2*t^6.08 + t^6.84 + t^6.92 + 4*t^6.96 + 3*t^7. + 4*t^7.04 + 7*t^7.08 + 4*t^7.12 + 8*t^7.16 + 12*t^7.2 + 6*t^7.24 + t^7.28 - t^7.32 + t^7.36 + t^8.04 + t^8.08 + t^8.12 + 3*t^8.16 + 4*t^8.2 + 4*t^8.24 + 3*t^8.28 + 5*t^8.32 - 2*t^8.36 - 10*t^8.4 - 5*t^8.44 + 2*t^8.48 - 2*t^8.52 - t^4.2/y - t^6.48/y - t^6.56/y - (2*t^6.6)/y - t^6.64/y + t^7.64/y + (3*t^7.68)/y + t^7.72/y + (4*t^7.76)/y + (6*t^7.8)/y + (4*t^7.84)/y + t^7.92/y + t^8.8/y + (2*t^8.88)/y + (2*t^8.92)/y - t^4.2*y - t^6.48*y - t^6.56*y - 2*t^6.6*y - t^6.64*y + t^7.64*y + 3*t^7.68*y + t^7.72*y + 4*t^7.76*y + 6*t^7.8*y + 4*t^7.84*y + t^7.92*y + t^8.8*y + 2*t^8.88*y + 2*t^8.92*y | g1^2*t^2.28 + g1*g2*t^2.36 + 3*t^2.4 + t^2.44/(g1*g2) + g1^2*t^3.48 + (g1*t^3.52)/g2 + (g2*t^3.68)/g1 + g1^4*t^4.56 + g1^3*g2*t^4.64 + 3*g1^2*t^4.68 + (g1*t^4.72)/g2 + g1^2*g2^2*t^4.72 + 3*g1*g2*t^4.76 + 8*t^4.8 + (3*t^4.84)/(g1*g2) + t^4.88/(g1^2*g2^2) + g1^4*t^5.76 + (g1^3*t^5.8)/g2 + g1^3*g2*t^5.84 + 3*g1^2*t^5.88 + (3*g1*t^5.92)/g2 + t^5.96/g2^2 - 3*t^6. - t^6.04/(g1*g2) + g2^2*t^6.04 + (2*g2*t^6.08)/g1 + g1^6*t^6.84 + g1^5*g2*t^6.92 + 4*g1^4*t^6.96 + (2*g1^3*t^7.)/g2 + g1^4*g2^2*t^7. + (g1^2*t^7.04)/g2^2 + 3*g1^3*g2*t^7.04 + 6*g1^2*t^7.08 + g1^3*g2^3*t^7.08 + (g1*t^7.12)/g2 + 3*g1^2*g2^2*t^7.12 + t^7.16/g2^2 + 7*g1*g2*t^7.16 + 12*t^7.2 + (6*t^7.24)/(g1*g2) + (3*t^7.28)/(g1^2*g2^2) - (2*g2*t^7.28)/g1 - (2*t^7.32)/g1^2 + t^7.32/(g1^3*g2^3) + (g2^2*t^7.36)/g1^2 + g1^6*t^8.04 + (g1^5*t^8.08)/g2 + g1^5*g2*t^8.12 + 3*g1^4*t^8.16 + (3*g1^3*t^8.2)/g2 + g1^4*g2^2*t^8.2 + (g1^2*t^8.24)/g2^2 + 3*g1^3*g2*t^8.24 + 3*g1^2*t^8.28 + (5*g1*t^8.32)/g2 + (3*t^8.36)/g2^2 - 5*g1*g2*t^8.36 - 12*t^8.4 + t^8.4/(g1*g2^3) + g1*g2^3*t^8.4 - (7*t^8.44)/(g1*g2) + 2*g2^2*t^8.44 - t^8.48/(g1^2*g2^2) + (3*g2*t^8.48)/g1 - (2*t^8.52)/g1^2 - t^4.2/y - (g1^2*t^6.48)/y - (g1*g2*t^6.56)/y - (2*t^6.6)/y - t^6.64/(g1*g2*y) + (g1^3*g2*t^7.64)/y + (3*g1^2*t^7.68)/y + (g1*t^7.72)/(g2*y) + (4*g1*g2*t^7.76)/y + (6*t^7.8)/y + (4*t^7.84)/(g1*g2*y) + t^7.92/(g1^2*y) + (g1^3*t^8.8)/(g2*y) + (2*g1^2*t^8.88)/y + (3*g1*t^8.92)/(g2*y) - (g1^2*g2^2*t^8.92)/y + t^8.96/(g2^2*y) - (g1*g2*t^8.96)/y - t^4.2*y - g1^2*t^6.48*y - g1*g2*t^6.56*y - 2*t^6.6*y - (t^6.64*y)/(g1*g2) + g1^3*g2*t^7.64*y + 3*g1^2*t^7.68*y + (g1*t^7.72*y)/g2 + 4*g1*g2*t^7.76*y + 6*t^7.8*y + (4*t^7.84*y)/(g1*g2) + (t^7.92*y)/g1^2 + (g1^3*t^8.8*y)/g2 + 2*g1^2*t^8.88*y + (3*g1*t^8.92*y)/g2 - g1^2*g2^2*t^8.92*y + (t^8.96*y)/g2^2 - g1*g2*t^8.96*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47063 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2X_1$ + $ M_4\phi_1q_1q_2$ + $ M_5\phi_1q_1^2$ + $ M_6q_1\tilde{q}_1$ | 0.6499 | 0.8195 | 0.7931 | [X:[1.6], M:[1.2, 0.4, 0.8, 0.8, 0.7434, 0.7434], q:[0.4283, 0.3717], qb:[0.8283, 0.7717], phi:[0.4]] | 2*t^2.23 + 3*t^2.4 + 2*t^3.43 + 2*t^3.6 + 3*t^4.46 + 6*t^4.63 + 7*t^4.8 + 4*t^5.66 + 8*t^5.83 + t^6. - t^4.2/y - t^4.2*y | detail |