Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5468 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_2\phi_1q_2^2$ + $ M_5M_6$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2\tilde{q}_1$ 0.7085 0.919 0.771 [X:[], M:[0.7206, 0.8088, 0.6764, 0.853, 1.147, 0.853, 0.7206, 0.7647], q:[0.875, 0.4044], qb:[0.4485, 0.7426], phi:[0.3823]] [X:[], M:[[18], [-2], [28], [-12], [12], [-12], [18], [8]], q:[[-17], [-1]], qb:[[-11], [13]], phi:[[4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ M_7$, $ M_8$, $ \phi_1^2$, $ M_2$, $ M_4$, $ M_6$, $ \phi_1q_2^2$, $ M_3^2$, $ M_1M_3$, $ M_3M_7$, $ M_1^2$, $ M_1M_7$, $ M_7^2$, $ M_3M_8$, $ M_3\phi_1^2$, $ M_2M_3$, $ M_1M_8$, $ M_7M_8$, $ M_1\phi_1^2$, $ M_7\phi_1^2$, $ M_1M_2$, $ M_3M_4$, $ M_3M_6$, $ M_2M_7$, $ M_8^2$, $ M_8\phi_1^2$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_4$, $ M_1M_6$, $ M_4M_7$, $ M_6M_7$, $ M_2M_8$, $ M_2\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_4M_8$, $ M_6M_8$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ q_1\tilde{q}_2$, $ M_2M_4$, $ M_2M_6$, $ \phi_1q_1q_2$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3\phi_1q_2^2$, $ \phi_1\tilde{q}_2^2$, $ M_7\phi_1q_2^2$ . -2 t^2.03 + 2*t^2.16 + 2*t^2.29 + t^2.43 + 2*t^2.56 + t^3.57 + t^4.06 + 2*t^4.19 + 5*t^4.32 + 5*t^4.46 + 7*t^4.59 + 6*t^4.72 + 6*t^4.85 + 2*t^4.99 + 3*t^5.12 + t^5.6 + t^5.74 - 2*t^6. + t^6.09 + 2*t^6.22 - t^6.26 + 5*t^6.35 + 9*t^6.49 + 13*t^6.62 + 15*t^6.75 + 19*t^6.88 + 15*t^7.01 + 15*t^7.15 + 8*t^7.28 + 6*t^7.41 + t^7.54 + t^7.63 + 3*t^7.68 + t^7.76 + t^7.9 - 4*t^8.03 + t^8.12 - 6*t^8.16 + 2*t^8.25 - 9*t^8.29 + 5*t^8.38 - 9*t^8.43 + 9*t^8.51 - 10*t^8.56 + 18*t^8.65 - 4*t^8.69 + 23*t^8.78 - 3*t^8.82 + 32*t^8.91 - t^4.15/y - t^6.18/y - (2*t^6.31)/y - (2*t^6.44)/y - t^6.57/y - t^6.71/y + (2*t^7.19)/y + (3*t^7.32)/y + (5*t^7.46)/y + (6*t^7.59)/y + (7*t^7.72)/y + (6*t^7.85)/y + (4*t^7.99)/y + (2*t^8.12)/y - t^8.21/y - (2*t^8.34)/y - (5*t^8.47)/y - (4*t^8.6)/y - (4*t^8.74)/y - (2*t^8.87)/y - t^4.15*y - t^6.18*y - 2*t^6.31*y - 2*t^6.44*y - t^6.57*y - t^6.71*y + 2*t^7.19*y + 3*t^7.32*y + 5*t^7.46*y + 6*t^7.59*y + 7*t^7.72*y + 6*t^7.85*y + 4*t^7.99*y + 2*t^8.12*y - t^8.21*y - 2*t^8.34*y - 5*t^8.47*y - 4*t^8.6*y - 4*t^8.74*y - 2*t^8.87*y g1^28*t^2.03 + 2*g1^18*t^2.16 + 2*g1^8*t^2.29 + t^2.43/g1^2 + (2*t^2.56)/g1^12 + g1^2*t^3.57 + g1^56*t^4.06 + 2*g1^46*t^4.19 + 5*g1^36*t^4.32 + 5*g1^26*t^4.46 + 7*g1^16*t^4.59 + 6*g1^6*t^4.72 + (6*t^4.85)/g1^4 + (2*t^4.99)/g1^14 + (3*t^5.12)/g1^24 + g1^30*t^5.6 + g1^20*t^5.74 - 2*t^6. + g1^84*t^6.09 + 2*g1^74*t^6.22 - t^6.26/g1^20 + 5*g1^64*t^6.35 + 9*g1^54*t^6.49 + 13*g1^44*t^6.62 + 15*g1^34*t^6.75 + 19*g1^24*t^6.88 + 15*g1^14*t^7.01 + 15*g1^4*t^7.15 + (8*t^7.28)/g1^6 + (6*t^7.41)/g1^16 + t^7.54/g1^26 + g1^58*t^7.63 + (3*t^7.68)/g1^36 + g1^48*t^7.76 + g1^38*t^7.9 - 4*g1^28*t^8.03 + g1^112*t^8.12 - 6*g1^18*t^8.16 + 2*g1^102*t^8.25 - 9*g1^8*t^8.29 + 5*g1^92*t^8.38 - (9*t^8.43)/g1^2 + 9*g1^82*t^8.51 - (10*t^8.56)/g1^12 + 18*g1^72*t^8.65 - (4*t^8.69)/g1^22 + 23*g1^62*t^8.78 - (3*t^8.82)/g1^32 + 32*g1^52*t^8.91 - (g1^4*t^4.15)/y - (g1^32*t^6.18)/y - (2*g1^22*t^6.31)/y - (2*g1^12*t^6.44)/y - (g1^2*t^6.57)/y - t^6.71/(g1^8*y) + (2*g1^46*t^7.19)/y + (3*g1^36*t^7.32)/y + (5*g1^26*t^7.46)/y + (6*g1^16*t^7.59)/y + (7*g1^6*t^7.72)/y + (6*t^7.85)/(g1^4*y) + (4*t^7.99)/(g1^14*y) + (2*t^8.12)/(g1^24*y) - (g1^60*t^8.21)/y - (2*g1^50*t^8.34)/y - (5*g1^40*t^8.47)/y - (4*g1^30*t^8.6)/y - (4*g1^20*t^8.74)/y - (2*g1^10*t^8.87)/y - g1^4*t^4.15*y - g1^32*t^6.18*y - 2*g1^22*t^6.31*y - 2*g1^12*t^6.44*y - g1^2*t^6.57*y - (t^6.71*y)/g1^8 + 2*g1^46*t^7.19*y + 3*g1^36*t^7.32*y + 5*g1^26*t^7.46*y + 6*g1^16*t^7.59*y + 7*g1^6*t^7.72*y + (6*t^7.85*y)/g1^4 + (4*t^7.99*y)/g1^14 + (2*t^8.12*y)/g1^24 - g1^60*t^8.21*y - 2*g1^50*t^8.34*y - 5*g1^40*t^8.47*y - 4*g1^30*t^8.6*y - 4*g1^20*t^8.74*y - 2*g1^10*t^8.87*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3880 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_2\phi_1q_2^2$ + $ M_5M_6$ + $ M_7\phi_1\tilde{q}_1^2$ 0.6901 0.8854 0.7795 [X:[], M:[0.7257, 0.8083, 0.6845, 0.8495, 1.1505, 0.8495, 0.7257], q:[0.8701, 0.4041], qb:[0.4454, 0.7464], phi:[0.3835]] t^2.05 + 2*t^2.18 + t^2.3 + t^2.42 + 2*t^2.55 + t^3.58 + t^3.7 + t^4.11 + 2*t^4.23 + 4*t^4.35 + 3*t^4.48 + 5*t^4.6 + 5*t^4.73 + 4*t^4.85 + 2*t^4.97 + 3*t^5.1 + t^5.63 + 2*t^5.75 + t^5.88 - t^6. - t^4.15/y - t^4.15*y detail