Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5354 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ q_1q_2\tilde{q}_1^2$ + $ M_5\phi_1\tilde{q}_2^2$ + $ M_6\phi_1q_2^2$ + $ M_7q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ 0.6598 0.8774 0.752 [X:[], M:[0.9622, 1.1134, 0.9622, 0.8866, 0.6701, 0.8866, 0.7784, 0.854], q:[0.7405, 0.2973], qb:[0.4811, 0.4055], phi:[0.5189]] [X:[], M:[[4], [-12], [4], [12], [-18], [12], [-3], [-11]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_2$, $ M_7$, $ q_2\tilde{q}_1$, $ M_8$, $ M_4$, $ M_6$, $ M_1$, $ M_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_7$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_7q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5M_8$, $ M_4M_5$, $ M_5M_6$, $ M_7^2$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_8q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_1M_5$, $ M_3M_5$, $ M_7M_8$, $ M_8q_2\tilde{q}_1$, $ M_4M_7$, $ M_6M_7$, $ M_4q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_8^2$, $ M_1M_7$, $ M_3M_7$, $ M_4M_8$, $ M_6M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ M_1M_8$, $ M_3M_8$, $ M_1M_4$, $ M_3M_4$, $ M_1M_6$, $ M_3M_6$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ \phi_1q_2^2\tilde{q}_2^2$, $ M_5\phi_1q_2\tilde{q}_1$ $M_7\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$ -1 t^2.01 + t^2.11 + 2*t^2.34 + t^2.56 + 2*t^2.66 + 2*t^2.89 + t^3.66 + t^3.89 + t^4.02 + t^4.12 + 2*t^4.22 + 2*t^4.35 + 3*t^4.44 + t^4.57 + 6*t^4.67 + 2*t^4.77 + 4*t^4.9 + 6*t^4.99 + t^5.12 + 6*t^5.22 + 3*t^5.32 + t^5.45 + 4*t^5.55 + 2*t^5.77 + t^5.9 - t^6. + t^6.03 + t^6.13 + 2*t^6.23 + 2*t^6.32 + 2*t^6.36 + 4*t^6.45 + 5*t^6.55 + t^6.58 + 6*t^6.68 + 7*t^6.78 + 3*t^6.88 + 4*t^6.91 + 10*t^7.01 + 8*t^7.1 + t^7.13 + 9*t^7.23 + 12*t^7.33 + 3*t^7.43 + 3*t^7.46 + 11*t^7.56 + 9*t^7.65 + t^7.69 + 4*t^7.78 + 10*t^7.88 + t^7.91 + 4*t^7.98 - 2*t^8.01 + t^8.04 + 2*t^8.11 + t^8.14 + 6*t^8.21 + t^8.24 - 5*t^8.34 + 2*t^8.37 + 4*t^8.43 + 4*t^8.46 - t^8.56 + t^8.59 - 2*t^8.66 + 6*t^8.69 + 7*t^8.79 + 4*t^8.92 + 2*t^8.98 - t^4.56/y - t^6.57/y - t^6.89/y - t^7.22/y + (2*t^7.35)/y + t^7.44/y + t^7.57/y + (5*t^7.67)/y + (2*t^7.77)/y + (5*t^7.9)/y + (7*t^7.99)/y + (7*t^8.22)/y + t^8.32/y + (2*t^8.45)/y + (5*t^8.55)/y - t^8.58/y + t^8.68/y + (2*t^8.77)/y - t^4.56*y - t^6.57*y - t^6.89*y - t^7.22*y + 2*t^7.35*y + t^7.44*y + t^7.57*y + 5*t^7.67*y + 2*t^7.77*y + 5*t^7.9*y + 7*t^7.99*y + 7*t^8.22*y + t^8.32*y + 2*t^8.45*y + 5*t^8.55*y - t^8.58*y + t^8.68*y + 2*t^8.77*y t^2.01/g1^18 + g1^5*t^2.11 + (2*t^2.34)/g1^3 + t^2.56/g1^11 + 2*g1^12*t^2.66 + 2*g1^4*t^2.89 + g1^3*t^3.66 + t^3.89/g1^5 + t^4.02/g1^36 + t^4.12/g1^13 + 2*g1^10*t^4.22 + (2*t^4.35)/g1^21 + 3*g1^2*t^4.44 + t^4.57/g1^29 + (6*t^4.67)/g1^6 + 2*g1^17*t^4.77 + (4*t^4.9)/g1^14 + 6*g1^9*t^4.99 + t^5.12/g1^22 + 6*g1*t^5.22 + 3*g1^24*t^5.32 + t^5.45/g1^7 + 4*g1^16*t^5.55 + 2*g1^8*t^5.77 + t^5.9/g1^23 - t^6. + t^6.03/g1^54 + t^6.13/g1^31 + (2*t^6.23)/g1^8 + 2*g1^15*t^6.32 + (2*t^6.36)/g1^39 + (4*t^6.45)/g1^16 + 5*g1^7*t^6.55 + t^6.58/g1^47 + (6*t^6.68)/g1^24 + (7*t^6.78)/g1 + 3*g1^22*t^6.88 + (4*t^6.91)/g1^32 + (10*t^7.01)/g1^9 + 8*g1^14*t^7.1 + t^7.13/g1^40 + (9*t^7.23)/g1^17 + 12*g1^6*t^7.33 + 3*g1^29*t^7.43 + (3*t^7.46)/g1^25 + (11*t^7.56)/g1^2 + 9*g1^21*t^7.65 + t^7.69/g1^33 + (4*t^7.78)/g1^10 + 10*g1^13*t^7.88 + t^7.91/g1^41 + 4*g1^36*t^7.98 - (2*t^8.01)/g1^18 + t^8.04/g1^72 + 2*g1^5*t^8.11 + t^8.14/g1^49 + 6*g1^28*t^8.21 + t^8.24/g1^26 - (5*t^8.34)/g1^3 + (2*t^8.37)/g1^57 + 4*g1^20*t^8.43 + (4*t^8.46)/g1^34 - t^8.56/g1^11 + t^8.59/g1^65 - 2*g1^12*t^8.66 + (6*t^8.69)/g1^42 + (7*t^8.79)/g1^19 + (4*t^8.92)/g1^50 + 2*g1^27*t^8.98 - t^4.56/(g1^2*y) - t^6.57/(g1^20*y) - t^6.89/(g1^5*y) - (g1^10*t^7.22)/y + (2*t^7.35)/(g1^21*y) + (g1^2*t^7.44)/y + t^7.57/(g1^29*y) + (5*t^7.67)/(g1^6*y) + (2*g1^17*t^7.77)/y + (5*t^7.9)/(g1^14*y) + (7*g1^9*t^7.99)/y + (7*g1*t^8.22)/y + (g1^24*t^8.32)/y + (2*t^8.45)/(g1^7*y) + (5*g1^16*t^8.55)/y - t^8.58/(g1^38*y) + t^8.68/(g1^15*y) + (2*g1^8*t^8.77)/y - (t^4.56*y)/g1^2 - (t^6.57*y)/g1^20 - (t^6.89*y)/g1^5 - g1^10*t^7.22*y + (2*t^7.35*y)/g1^21 + g1^2*t^7.44*y + (t^7.57*y)/g1^29 + (5*t^7.67*y)/g1^6 + 2*g1^17*t^7.77*y + (5*t^7.9*y)/g1^14 + 7*g1^9*t^7.99*y + 7*g1*t^8.22*y + g1^24*t^8.32*y + (2*t^8.45*y)/g1^7 + 5*g1^16*t^8.55*y - (t^8.58*y)/g1^38 + (t^8.68*y)/g1^15 + 2*g1^8*t^8.77*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3756 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ q_1q_2\tilde{q}_1^2$ + $ M_5\phi_1\tilde{q}_2^2$ + $ M_6\phi_1q_2^2$ + $ M_7q_1\tilde{q}_1$ 0.6477 0.8571 0.7557 [X:[], M:[0.9554, 1.1339, 0.9554, 0.8661, 0.7009, 0.8661, 0.7835], q:[0.7388, 0.3058], qb:[0.4777, 0.3884], phi:[0.5223]] t^2.08 + t^2.1 + 2*t^2.35 + 2*t^2.6 + 2*t^2.87 + t^3.38 + t^3.65 + t^3.92 + 2*t^4.17 + t^4.19 + t^4.21 + 3*t^4.43 + 2*t^4.45 + 2*t^4.68 + 5*t^4.7 + 6*t^4.95 + 2*t^4.97 + 3*t^5.2 + 4*t^5.22 + 5*t^5.46 + 4*t^5.73 + 2*t^5.98 - t^6. - t^4.57/y - t^4.57*y detail