Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5336 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_1M_6$ + $ M_4M_7$ + $ \phi_1\tilde{q}_1^2$ + $ M_2^2$ + $ M_5\phi_1q_1\tilde{q}_2$ + $ M_5M_8$ 0.6068 0.7776 0.7804 [X:[], M:[0.9514, 1.0, 0.7075, 1.2439, 0.7318, 1.0486, 0.7561, 1.2682], q:[0.5365, 0.5122], qb:[0.7561, 0.2439], phi:[0.4878]] [X:[], M:[[8], [0], [7], [1], [3], [-8], [-1], [-3]], q:[[-6], [-2]], qb:[[-1], [1]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_7$, $ q_1\tilde{q}_2$, $ \phi_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_2$, $ M_6$, $ \phi_1q_2\tilde{q}_2$, $ M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_7$, $ M_3q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_7^2$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ M_7q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ q_1^2\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_3\phi_1\tilde{q}_2^2$, $ M_7\phi_1^2$, $ M_7\phi_1\tilde{q}_2^2$, $ M_3M_6$, $ M_2M_7$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2^3$, $ \phi_1q_1\tilde{q}_1$, $ M_6M_7$, $ M_6q_1\tilde{q}_2$, $ \phi_1^4$, $ M_3\phi_1q_2\tilde{q}_2$, $ \phi_1^3\tilde{q}_2^2$, $ \phi_1^2\tilde{q}_2^4$, $ M_3M_8$, $ M_2\phi_1^2$, $ M_3\phi_1q_1\tilde{q}_2$ $M_7\phi_1q_2\tilde{q}_2$ -2 t^2.12 + t^2.27 + t^2.34 + 2*t^2.93 + t^3. + t^3.15 + t^3.73 + 2*t^3.8 + t^4.24 + t^4.39 + t^4.46 + 2*t^4.54 + 2*t^4.61 + 2*t^4.68 + 2*t^5.05 + t^5.2 + 4*t^5.27 + t^5.34 + t^5.41 + t^5.49 + 4*t^5.85 + 2*t^5.93 - 2*t^6. + 3*t^6.07 + 2*t^6.15 + t^6.29 + t^6.37 + t^6.51 + 2*t^6.66 + 4*t^6.73 + 2*t^6.8 + t^6.88 + 4*t^6.95 + 2*t^7.02 + 2*t^7.17 + t^7.32 + 2*t^7.39 + t^7.46 + 3*t^7.54 + 6*t^7.61 + 2*t^7.68 + t^7.76 + 2*t^7.83 + 4*t^7.98 - 2*t^8.12 + 5*t^8.2 - t^8.27 - t^8.34 + 4*t^8.41 + 4*t^8.49 + t^8.56 + t^8.63 + t^8.64 + 7*t^8.78 + 3*t^8.85 - 6*t^8.93 - t^4.46/y - t^6.59/y + t^7.46/y + t^7.54/y + t^7.61/y + (2*t^8.05)/y + t^8.12/y + (2*t^8.2)/y + (4*t^8.27)/y + (2*t^8.34)/y + t^8.41/y + t^8.49/y - t^8.71/y + (2*t^8.85)/y + (4*t^8.93)/y - t^4.46*y - t^6.59*y + t^7.46*y + t^7.54*y + t^7.61*y + 2*t^8.05*y + t^8.12*y + 2*t^8.2*y + 4*t^8.27*y + 2*t^8.34*y + t^8.41*y + t^8.49*y - t^8.71*y + 2*t^8.85*y + 4*t^8.93*y g1^7*t^2.12 + t^2.27/g1 + t^2.34/g1^5 + 2*g1^4*t^2.93 + t^3. + t^3.15/g1^8 + g1*t^3.73 + (2*t^3.8)/g1^3 + g1^14*t^4.24 + g1^6*t^4.39 + g1^2*t^4.46 + (2*t^4.54)/g1^2 + (2*t^4.61)/g1^6 + (2*t^4.68)/g1^10 + 2*g1^11*t^5.05 + g1^3*t^5.2 + (4*t^5.27)/g1 + t^5.34/g1^5 + t^5.41/g1^9 + t^5.49/g1^13 + 4*g1^8*t^5.85 + 2*g1^4*t^5.93 - 2*t^6. + (3*t^6.07)/g1^4 + (2*t^6.15)/g1^8 + t^6.29/g1^16 + g1^21*t^6.37 + g1^13*t^6.51 + 2*g1^5*t^6.66 + 4*g1*t^6.73 + (2*t^6.8)/g1^3 + t^6.88/g1^7 + (4*t^6.95)/g1^11 + (2*t^7.02)/g1^15 + 2*g1^18*t^7.17 + g1^10*t^7.32 + 2*g1^6*t^7.39 + g1^2*t^7.46 + (3*t^7.54)/g1^2 + (6*t^7.61)/g1^6 + (2*t^7.68)/g1^10 + t^7.76/g1^14 + (2*t^7.83)/g1^18 + 4*g1^15*t^7.98 - 2*g1^7*t^8.12 + 5*g1^3*t^8.2 - t^8.27/g1 - t^8.34/g1^5 + (4*t^8.41)/g1^9 + (3*t^8.49)/g1^13 + g1^28*t^8.49 + t^8.56/g1^17 + t^8.63/g1^21 + g1^20*t^8.64 + 7*g1^12*t^8.78 + 3*g1^8*t^8.85 - 6*g1^4*t^8.93 - (g1^2*t^4.46)/y - (g1^9*t^6.59)/y + (g1^2*t^7.46)/y + t^7.54/(g1^2*y) + t^7.61/(g1^6*y) + (2*g1^11*t^8.05)/y + (g1^7*t^8.12)/y + (2*g1^3*t^8.2)/y + (4*t^8.27)/(g1*y) + (2*t^8.34)/(g1^5*y) + t^8.41/(g1^9*y) + t^8.49/(g1^13*y) - (g1^16*t^8.71)/y + (2*g1^8*t^8.85)/y + (4*g1^4*t^8.93)/y - g1^2*t^4.46*y - g1^9*t^6.59*y + g1^2*t^7.46*y + (t^7.54*y)/g1^2 + (t^7.61*y)/g1^6 + 2*g1^11*t^8.05*y + g1^7*t^8.12*y + 2*g1^3*t^8.2*y + (4*t^8.27*y)/g1 + (2*t^8.34*y)/g1^5 + (t^8.41*y)/g1^9 + (t^8.49*y)/g1^13 - g1^16*t^8.71*y + 2*g1^8*t^8.85*y + 4*g1^4*t^8.93*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3632 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_1M_6$ + $ M_4M_7$ + $ \phi_1\tilde{q}_1^2$ + $ M_2^2$ + $ M_5\phi_1q_1\tilde{q}_2$ 0.6266 0.8141 0.7697 [X:[], M:[0.9438, 1.0, 0.7009, 1.243, 0.7289, 1.0562, 0.757], q:[0.5421, 0.514], qb:[0.757, 0.243], phi:[0.486]] t^2.1 + t^2.19 + t^2.27 + t^2.36 + 2*t^2.92 + t^3. + t^3.17 + t^3.73 + t^3.81 + t^4.21 + t^4.29 + 2*t^4.37 + 2*t^4.46 + 3*t^4.54 + 2*t^4.63 + 2*t^4.71 + 2*t^5.02 + 2*t^5.1 + 2*t^5.19 + 4*t^5.27 + 2*t^5.36 + t^5.44 + t^5.52 + 4*t^5.83 + 2*t^5.92 - t^6. - t^4.46/y - t^4.46*y detail