Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5331 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1^2$ + $ \phi_1q_1\tilde{q}_1$ + $ M_3X_1$ + $ M_2X_2$ + $ M_4M_6$ + $ M_7\phi_1q_2\tilde{q}_2$ + $ M_8\phi_1\tilde{q}_2^2$ 0.6274 0.8007 0.7836 [X:[1.5907, 1.3627], M:[1.0, 0.6373, 0.4093, 1.228, 0.772, 0.772, 0.8187, 0.684], q:[0.6813, 0.3187], qb:[0.9093, 0.4533], phi:[0.4093]] [X:[[1], [4]], M:[[0], [-4], [-1], [-3], [3], [3], [-2], [-9]], q:[[2], [-2]], qb:[[-1], [5]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_8$, $ M_5$, $ M_6$, $ M_7$, $ \phi_1^2$, $ M_1$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ X_2$, $ M_8^2$, $ M_5M_8$, $ M_6M_8$, $ M_7M_8$, $ M_8\phi_1^2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_2$, $ M_5M_7$, $ M_6M_7$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ X_1$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_8$, $ M_8\phi_1q_2^2$, $ M_1M_5$, $ M_1M_6$, $ \phi_1q_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_5\phi_1q_2^2$, $ M_6\phi_1q_2^2$, $ M_8q_1\tilde{q}_2$, $ M_7\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_5q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$ . -2 t^2.05 + 2*t^2.32 + 2*t^2.46 + t^3. + t^3.14 + t^3.4 + t^4.09 + t^4.1 + 2*t^4.37 + 2*t^4.51 + 3*t^4.63 + 5*t^4.77 + 3*t^4.91 + t^5.05 + t^5.19 + 2*t^5.32 + 4*t^5.46 + t^5.6 + 2*t^5.72 + t^5.86 - 2*t^6. + t^6.14 + t^6.16 + t^6.28 + 2*t^6.4 + 2*t^6.42 + t^6.54 + 2*t^6.56 + t^6.68 + t^6.81 + 4*t^6.82 + 3*t^6.95 + 3*t^6.96 + 5*t^7.09 + t^7.1 + 6*t^7.23 + t^7.24 + 5*t^7.37 + 4*t^7.51 + t^7.63 + t^7.65 + 6*t^7.77 + 4*t^7.91 + 3*t^8.04 - t^8.05 + 3*t^8.18 + t^8.19 + t^8.21 - 5*t^8.32 + t^8.33 - 3*t^8.46 + 2*t^8.47 + t^8.6 + 2*t^8.61 + 2*t^8.72 + 2*t^8.74 + t^8.86 + 4*t^8.88 - t^4.23/y - t^6.28/y - t^6.54/y - (2*t^6.68)/y + (2*t^7.37)/y + (2*t^7.51)/y + t^7.63/y + (6*t^7.77)/y + (2*t^7.91)/y + t^8.05/y + t^8.18/y + t^8.19/y + (2*t^8.32)/y - t^8.33/y + (5*t^8.46)/y + t^8.6/y + (2*t^8.72)/y - (2*t^8.74)/y + t^8.86/y - t^4.23*y - t^6.28*y - t^6.54*y - 2*t^6.68*y + 2*t^7.37*y + 2*t^7.51*y + t^7.63*y + 6*t^7.77*y + 2*t^7.91*y + t^8.05*y + t^8.18*y + t^8.19*y + 2*t^8.32*y - t^8.33*y + 5*t^8.46*y + t^8.6*y + 2*t^8.72*y - 2*t^8.74*y + t^8.86*y t^2.05/g1^9 + 2*g1^3*t^2.32 + (2*t^2.46)/g1^2 + t^3. + t^3.14/g1^5 + g1^7*t^3.4 + g1^4*t^4.09 + t^4.1/g1^18 + (2*t^4.37)/g1^6 + (2*t^4.51)/g1^11 + 3*g1^6*t^4.63 + 5*g1*t^4.77 + (3*t^4.91)/g1^4 + t^5.05/g1^9 + t^5.19/g1^14 + 2*g1^3*t^5.32 + (4*t^5.46)/g1^2 + t^5.6/g1^7 + 2*g1^10*t^5.72 + g1^5*t^5.86 - 2*t^6. + t^6.14/g1^5 + t^6.16/g1^27 + t^6.28/g1^10 + 2*g1^7*t^6.4 + (2*t^6.42)/g1^15 + g1^2*t^6.54 + (2*t^6.56)/g1^20 + t^6.68/g1^3 + g1^14*t^6.81 + (4*t^6.82)/g1^8 + 3*g1^9*t^6.95 + (3*t^6.96)/g1^13 + 5*g1^4*t^7.09 + t^7.1/g1^18 + (6*t^7.23)/g1 + t^7.24/g1^23 + (5*t^7.37)/g1^6 + (4*t^7.51)/g1^11 + g1^6*t^7.63 + t^7.65/g1^16 + 6*g1*t^7.77 + (4*t^7.91)/g1^4 + 3*g1^13*t^8.04 - t^8.05/g1^9 + 3*g1^8*t^8.18 + t^8.19/g1^14 + t^8.21/g1^36 - 5*g1^3*t^8.32 + t^8.33/g1^19 - (3*t^8.46)/g1^2 + (2*t^8.47)/g1^24 + t^8.6/g1^7 + (2*t^8.61)/g1^29 + 2*g1^10*t^8.72 + (2*t^8.74)/g1^12 + g1^5*t^8.86 + (4*t^8.88)/g1^17 - t^4.23/(g1*y) - t^6.28/(g1^10*y) - (g1^2*t^6.54)/y - (2*t^6.68)/(g1^3*y) + (2*t^7.37)/(g1^6*y) + (2*t^7.51)/(g1^11*y) + (g1^6*t^7.63)/y + (6*g1*t^7.77)/y + (2*t^7.91)/(g1^4*y) + t^8.05/(g1^9*y) + (g1^8*t^8.18)/y + t^8.19/(g1^14*y) + (2*g1^3*t^8.32)/y - t^8.33/(g1^19*y) + (5*t^8.46)/(g1^2*y) + t^8.6/(g1^7*y) + (2*g1^10*t^8.72)/y - (2*t^8.74)/(g1^12*y) + (g1^5*t^8.86)/y - (t^4.23*y)/g1 - (t^6.28*y)/g1^10 - g1^2*t^6.54*y - (2*t^6.68*y)/g1^3 + (2*t^7.37*y)/g1^6 + (2*t^7.51*y)/g1^11 + g1^6*t^7.63*y + 6*g1*t^7.77*y + (2*t^7.91*y)/g1^4 + (t^8.05*y)/g1^9 + g1^8*t^8.18*y + (t^8.19*y)/g1^14 + 2*g1^3*t^8.32*y - (t^8.33*y)/g1^19 + (5*t^8.46*y)/g1^2 + (t^8.6*y)/g1^7 + 2*g1^10*t^8.72*y - (2*t^8.74*y)/g1^12 + g1^5*t^8.86*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3624 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1^2$ + $ \phi_1q_1\tilde{q}_1$ + $ M_3X_1$ + $ M_2X_2$ + $ M_4M_6$ + $ M_7\phi_1q_2\tilde{q}_2$ 0.6067 0.7607 0.7976 [X:[1.5894, 1.3576], M:[1.0, 0.6424, 0.4106, 1.2318, 0.7682, 0.7682, 0.8212], q:[0.6788, 0.3212], qb:[0.9106, 0.447], phi:[0.4106]] 2*t^2.3 + 2*t^2.46 + t^3. + t^3.16 + t^3.38 + t^3.91 + t^4.07 + 3*t^4.61 + 5*t^4.77 + 3*t^4.93 + 2*t^5.3 + 3*t^5.46 + t^5.62 + 2*t^5.68 + t^5.84 - 2*t^6. - t^4.23/y - t^4.23*y detail