Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5319 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}^{2}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6525 0.84 0.7768 [M:[0.7, 0.9, 0.9, 0.7, 1.2, 0.8, 1.0, 0.8], q:[0.8, 0.5], qb:[0.3, 0.8], phi:[0.4]] [M:[[1], [-1], [1], [-1], [0], [0], [0], [0]], q:[[-1], [0]], qb:[[0], [1]], phi:[[0]]] 1 {a: 261/400, c: 21/25, M1: 7/10, M2: 9/10, M3: 9/10, M4: 7/10, M5: 6/5, M6: 4/5, M7: 1, M8: 4/5, q1: 4/5, q2: 1/2, qb1: 3/10, qb2: 4/5, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{7}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{8}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{8}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{2}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{3}^{2}$ ${}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ -2 2*t^2.1 + 3*t^2.4 + 2*t^2.7 + t^3. + 4*t^4.2 + 6*t^4.5 + 11*t^4.8 + 8*t^5.1 + 5*t^5.4 - 2*t^6. + 4*t^6.3 + 9*t^6.6 + 18*t^6.9 + 24*t^7.2 + 20*t^7.5 + 10*t^7.8 - 4*t^8.1 - 4*t^8.4 - 2*t^8.7 - t^4.2/y - (2*t^6.3)/y - (2*t^6.6)/y - (2*t^6.9)/y + t^7.2/y + (8*t^7.5)/y + (9*t^7.8)/y + (10*t^8.1)/y + t^8.4/y - (2*t^8.7)/y - t^4.2*y - 2*t^6.3*y - 2*t^6.6*y - 2*t^6.9*y + t^7.2*y + 8*t^7.5*y + 9*t^7.8*y + 10*t^8.1*y + t^8.4*y - 2*t^8.7*y t^2.1/g1 + g1*t^2.1 + 3*t^2.4 + t^2.7/g1 + g1*t^2.7 + t^3. + 2*t^4.2 + t^4.2/g1^2 + g1^2*t^4.2 + (3*t^4.5)/g1 + 3*g1*t^4.5 + 9*t^4.8 + t^4.8/g1^2 + g1^2*t^4.8 + (4*t^5.1)/g1 + 4*g1*t^5.1 + 3*t^5.4 + t^5.4/g1^2 + g1^2*t^5.4 - 2*t^6. + t^6.3/g1^3 + t^6.3/g1 + g1*t^6.3 + g1^3*t^6.3 + 3*t^6.6 + (3*t^6.6)/g1^2 + 3*g1^2*t^6.6 + t^6.9/g1^3 + (8*t^6.9)/g1 + 8*g1*t^6.9 + g1^3*t^6.9 + 16*t^7.2 + (4*t^7.2)/g1^2 + 4*g1^2*t^7.2 + t^7.5/g1^3 + (9*t^7.5)/g1 + 9*g1*t^7.5 + g1^3*t^7.5 + 4*t^7.8 + (3*t^7.8)/g1^2 + 3*g1^2*t^7.8 + t^8.1/g1^3 - (3*t^8.1)/g1 - 3*g1*t^8.1 + g1^3*t^8.1 - 8*t^8.4 + t^8.4/g1^4 + t^8.4/g1^2 + g1^2*t^8.4 + g1^4*t^8.4 + (3*t^8.7)/g1^3 - (4*t^8.7)/g1 - 4*g1*t^8.7 + 3*g1^3*t^8.7 - t^4.2/y - t^6.3/(g1*y) - (g1*t^6.3)/y - (2*t^6.6)/y - t^6.9/(g1*y) - (g1*t^6.9)/y + t^7.2/y + (4*t^7.5)/(g1*y) + (4*g1*t^7.5)/y + (7*t^7.8)/y + t^7.8/(g1^2*y) + (g1^2*t^7.8)/y + (5*t^8.1)/(g1*y) + (5*g1*t^8.1)/y + (3*t^8.4)/y - t^8.4/(g1^2*y) - (g1^2*t^8.4)/y - t^8.7/(g1*y) - (g1*t^8.7)/y - t^4.2*y - (t^6.3*y)/g1 - g1*t^6.3*y - 2*t^6.6*y - (t^6.9*y)/g1 - g1*t^6.9*y + t^7.2*y + (4*t^7.5*y)/g1 + 4*g1*t^7.5*y + 7*t^7.8*y + (t^7.8*y)/g1^2 + g1^2*t^7.8*y + (5*t^8.1*y)/g1 + 5*g1*t^8.1*y + 3*t^8.4*y - (t^8.4*y)/g1^2 - g1^2*t^8.4*y - (t^8.7*y)/g1 - g1*t^8.7*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3619 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}^{2}$ 0.636 0.811 0.7842 [M:[0.7, 0.9, 0.9, 0.7, 1.2, 0.8, 1.0], q:[0.8, 0.5], qb:[0.3, 0.8], phi:[0.4]] 2*t^2.1 + 2*t^2.4 + 2*t^2.7 + t^3. + t^3.6 + 4*t^4.2 + 4*t^4.5 + 8*t^4.8 + 6*t^5.1 + 4*t^5.4 + 2*t^5.7 - t^4.2/y - t^4.2*y detail {a: 159/250, c: 811/1000, M1: 7/10, M2: 9/10, M3: 9/10, M4: 7/10, M5: 6/5, M6: 4/5, M7: 1, q1: 4/5, q2: 1/2, qb1: 3/10, qb2: 4/5, phi1: 2/5}