Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5261 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1^2$ + $ M_2M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7\phi_1q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ | 0.6336 | 0.8211 | 0.7717 | [X:[1.5714], M:[1.0, 0.7143, 1.2857, 0.4286, 0.7143, 0.7857, 0.8571, 0.7857], q:[0.3214, 0.6786], qb:[0.3929, 0.8929], phi:[0.4286]] | [X:[[0]], M:[[0], [0], [0], [0], [0], [2], [0], [-2]], q:[[1], [-1]], qb:[[-1], [1]], phi:[[0]]] | 1 | {a: 27819/43904, c: 36051/43904, X1: 11/7, M1: 1, M2: 5/7, M3: 9/7, M4: 3/7, M5: 5/7, M6: 11/14, M7: 6/7, M8: 11/14, q1: 9/28, q2: 19/28, qb1: 11/28, qb2: 25/28, phi1: 3/7} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_5$, $ M_8$, $ M_6$, $ M_7$, $ \phi_1^2$, $ M_1$, $ q_2\tilde{q}_1$, $ \phi_1q_1^2$, $ M_2^2$, $ M_2M_5$, $ M_5^2$, $ \phi_1q_1q_2$, $ M_2M_8$, $ M_5M_8$, $ \phi_1q_2\tilde{q}_1$, $ M_2M_6$, $ M_5M_6$, $ M_6^2$, $ M_2M_7$, $ M_5M_7$, $ M_6M_8$, $ M_8^2$, $ M_2\phi_1^2$, $ M_5\phi_1^2$, $ X_1$, $ M_8^2$, $ M_6^2$, $ M_7M_8$, $ M_8\phi_1^2$, $ M_6M_7$, $ M_6\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_2$, $ M_1M_5$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_8$, $ \phi_1q_2^2$, $ M_5q_2\tilde{q}_1$, $ M_1M_6$, $ M_2\phi_1q_1^2$, $ M_5\phi_1q_1^2$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_6\phi_1q_1^2$, $ M_8\phi_1q_1^2$, $ M_6q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_6\phi_1q_1^2$, $ M_7q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_7\phi_1q_1^2$, $ \phi_1^3q_1^2$ | . | -2 | 2*t^2.14 + 2*t^2.36 + 2*t^2.57 + t^3. + 2*t^3.21 + 3*t^4.29 + 4*t^4.5 + 8*t^4.71 + 4*t^4.93 + 5*t^5.14 + 6*t^5.36 + 5*t^5.57 + 2*t^5.79 - 2*t^6. + 5*t^6.43 + 4*t^6.64 + 10*t^6.86 + 10*t^7.07 + 14*t^7.29 + 14*t^7.5 + 16*t^7.71 + 12*t^7.93 - t^8.14 - 4*t^8.36 + 2*t^8.57 + 2*t^8.79 - t^4.29/y - t^6.43/y - (2*t^6.64)/y - (2*t^6.86)/y + t^7.29/y + (4*t^7.5)/y + (7*t^7.71)/y + (6*t^7.93)/y + (4*t^8.14)/y + (6*t^8.36)/y + (5*t^8.57)/y + (2*t^8.79)/y - t^4.29*y - t^6.43*y - 2*t^6.64*y - 2*t^6.86*y + t^7.29*y + 4*t^7.5*y + 7*t^7.71*y + 6*t^7.93*y + 4*t^8.14*y + 6*t^8.36*y + 5*t^8.57*y + 2*t^8.79*y | 2*t^2.14 + t^2.36/g1^2 + g1^2*t^2.36 + 2*t^2.57 + t^3. + t^3.21/g1^2 + g1^2*t^3.21 + 3*t^4.29 + (2*t^4.5)/g1^2 + 2*g1^2*t^4.5 + 6*t^4.71 + t^4.71/g1^4 + g1^4*t^4.71 + (2*t^4.93)/g1^2 + 2*g1^2*t^4.93 + 5*t^5.14 + (3*t^5.36)/g1^2 + 3*g1^2*t^5.36 + 3*t^5.57 + t^5.57/g1^4 + g1^4*t^5.57 + t^5.79/g1^2 + g1^2*t^5.79 - 2*t^6. + 3*t^6.43 + t^6.43/g1^4 + g1^4*t^6.43 + (2*t^6.64)/g1^2 + 2*g1^2*t^6.64 + 6*t^6.86 + (2*t^6.86)/g1^4 + 2*g1^4*t^6.86 + t^7.07/g1^6 + (4*t^7.07)/g1^2 + 4*g1^2*t^7.07 + g1^6*t^7.07 + 10*t^7.29 + (2*t^7.29)/g1^4 + 2*g1^4*t^7.29 + (7*t^7.5)/g1^2 + 7*g1^2*t^7.5 + 10*t^7.71 + (3*t^7.71)/g1^4 + 3*g1^4*t^7.71 + t^7.93/g1^6 + (5*t^7.93)/g1^2 + 5*g1^2*t^7.93 + g1^6*t^7.93 - 3*t^8.14 + t^8.14/g1^4 + g1^4*t^8.14 - (2*t^8.36)/g1^2 - 2*g1^2*t^8.36 - 2*t^8.57 + (2*t^8.57)/g1^4 + 2*g1^4*t^8.57 + t^8.79/g1^6 + g1^6*t^8.79 - t^4.29/y - t^6.43/y - t^6.64/(g1^2*y) - (g1^2*t^6.64)/y - (2*t^6.86)/y + t^7.29/y + (2*t^7.5)/(g1^2*y) + (2*g1^2*t^7.5)/y + (7*t^7.71)/y + (3*t^7.93)/(g1^2*y) + (3*g1^2*t^7.93)/y + (4*t^8.14)/y + (3*t^8.36)/(g1^2*y) + (3*g1^2*t^8.36)/y + (3*t^8.57)/y + t^8.57/(g1^4*y) + (g1^4*t^8.57)/y + t^8.79/(g1^2*y) + (g1^2*t^8.79)/y - t^4.29*y - t^6.43*y - (t^6.64*y)/g1^2 - g1^2*t^6.64*y - 2*t^6.86*y + t^7.29*y + (2*t^7.5*y)/g1^2 + 2*g1^2*t^7.5*y + 7*t^7.71*y + (3*t^7.93*y)/g1^2 + 3*g1^2*t^7.93*y + 4*t^8.14*y + (3*t^8.36*y)/g1^2 + 3*g1^2*t^8.36*y + 3*t^8.57*y + (t^8.57*y)/g1^4 + g1^4*t^8.57*y + (t^8.79*y)/g1^2 + g1^2*t^8.79*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3566 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1^2$ + $ M_2M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7\phi_1q_1\tilde{q}_1$ | 0.6171 | 0.7931 | 0.7781 | [X:[1.5714], M:[1.0, 0.7143, 1.2857, 0.4286, 0.7143, 0.7557, 0.8571], q:[0.3064, 0.6936], qb:[0.4079, 0.8779], phi:[0.4286]] | 2*t^2.14 + t^2.27 + 2*t^2.57 + t^3. + t^3.12 + t^3.3 + t^3.55 + 3*t^4.29 + 2*t^4.41 + t^4.53 + 5*t^4.71 + 2*t^4.84 + 5*t^5.14 + 3*t^5.27 + t^5.39 + 2*t^5.45 + 2*t^5.57 + 3*t^5.7 + t^5.82 + t^5.88 - 2*t^6. - t^4.29/y - t^4.29*y | detail |