Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
526 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ | 0.7211 | 0.8891 | 0.811 | [M:[0.9247, 0.774, 1.0753, 0.9247, 0.9247], q:[0.613, 0.4623], qb:[0.613, 0.4623], phi:[0.4623]] | [M:[[-2, -2], [-6, -6], [2, 2], [0, 4], [-4, -8]], q:[[4, 6], [-2, -4]], qb:[[2, 0], [0, 2]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{5}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{4}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}^{2}$ | ${}M_{3}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ | 0 | t^2.322 + 4*t^2.774 + 2*t^3.226 + 3*t^4.161 + 4*t^4.613 + t^4.644 + 3*t^5.065 + 4*t^5.096 + 8*t^5.548 - 2*t^6.452 + 3*t^6.483 + 12*t^6.935 + t^6.966 + 11*t^7.387 + 4*t^7.418 + 5*t^7.839 + 8*t^7.87 - t^8.291 + 12*t^8.322 - 7*t^8.774 + 3*t^8.805 - t^4.387/y - t^6.709/y - (3*t^7.161)/y + (3*t^7.613)/y + t^8.065/y + (4*t^8.096)/y + (8*t^8.548)/y - t^4.387*y - t^6.709*y - 3*t^7.161*y + 3*t^7.613*y + t^8.065*y + 4*t^8.096*y + 8*t^8.548*y | t^2.322/(g1^6*g2^6) + t^2.774/(g1^4*g2^8) + (2*t^2.774)/(g1^2*g2^2) + g2^4*t^2.774 + 2*g1^2*g2^2*t^3.226 + t^4.161/(g1^5*g2^9) + t^4.161/(g1^3*g2^3) + (g2^3*t^4.161)/g1 + t^4.613/(g1*g2^5) + 2*g1*g2*t^4.613 + g1^3*g2^7*t^4.613 + t^4.644/(g1^12*g2^12) + (g1^3*t^5.065)/g2 + g1^5*g2^5*t^5.065 + g1^7*g2^11*t^5.065 + t^5.096/(g1^10*g2^14) + (2*t^5.096)/(g1^8*g2^8) + t^5.096/(g1^6*g2^2) + t^5.548/(g1^8*g2^16) + t^5.548/(g1^6*g2^10) + (4*t^5.548)/(g1^4*g2^4) + (g2^2*t^5.548)/g1^2 + g2^8*t^5.548 - (g1^2*t^6.452)/g2^2 - g1^6*g2^10*t^6.452 + t^6.483/(g1^11*g2^15) + t^6.483/(g1^9*g2^9) + t^6.483/(g1^7*g2^3) + t^6.935/(g1^9*g2^17) + (3*t^6.935)/(g1^7*g2^11) + (4*t^6.935)/(g1^5*g2^5) + (3*g2*t^6.935)/g1^3 + (g2^7*t^6.935)/g1 + t^6.966/(g1^18*g2^18) + t^7.387/(g1^5*g2^13) + (3*t^7.387)/(g1^3*g2^7) + (3*t^7.387)/(g1*g2) + 3*g1*g2^5*t^7.387 + g1^3*g2^11*t^7.387 + t^7.418/(g1^16*g2^20) + (2*t^7.418)/(g1^14*g2^14) + t^7.418/(g1^12*g2^8) + t^7.839/(g1*g2^9) + (g1*t^7.839)/g2^3 + g1^3*g2^3*t^7.839 + g1^5*g2^9*t^7.839 + g1^7*g2^15*t^7.839 + t^7.87/(g1^14*g2^22) + t^7.87/(g1^12*g2^16) + (4*t^7.87)/(g1^10*g2^10) + t^7.87/(g1^8*g2^4) + (g2^2*t^7.87)/g1^6 - g1^7*g2^7*t^8.291 + (2*t^8.322)/g1^4 + t^8.322/(g1^12*g2^24) + (2*t^8.322)/(g1^10*g2^18) + (2*t^8.322)/(g1^8*g2^12) + (2*t^8.322)/(g1^6*g2^6) + (2*g2^6*t^8.322)/g1^2 + g2^12*t^8.322 + t^8.774/(g1^6*g2^14) - (3*t^8.774)/(g1^4*g2^8) - (3*t^8.774)/(g1^2*g2^2) - 3*g2^4*t^8.774 + g1^2*g2^10*t^8.774 + t^8.805/(g1^17*g2^21) + t^8.805/(g1^15*g2^15) + t^8.805/(g1^13*g2^9) - t^4.387/(g1*g2*y) - t^6.709/(g1^7*g2^7*y) - t^7.161/(g1^5*g2^9*y) - t^7.161/(g1^3*g2^3*y) - (g2^3*t^7.161)/(g1*y) + t^7.613/(g1*g2^5*y) + (g1*g2*t^7.613)/y + (g1^3*g2^7*t^7.613)/y + (g1^5*g2^5*t^8.065)/y + t^8.096/(g1^10*g2^14*y) + (2*t^8.096)/(g1^8*g2^8*y) + t^8.096/(g1^6*g2^2*y) + (2*t^8.548)/(g1^6*g2^10*y) + (4*t^8.548)/(g1^4*g2^4*y) + (2*g2^2*t^8.548)/(g1^2*y) - (t^4.387*y)/(g1*g2) - (t^6.709*y)/(g1^7*g2^7) - (t^7.161*y)/(g1^5*g2^9) - (t^7.161*y)/(g1^3*g2^3) - (g2^3*t^7.161*y)/g1 + (t^7.613*y)/(g1*g2^5) + g1*g2*t^7.613*y + g1^3*g2^7*t^7.613*y + g1^5*g2^5*t^8.065*y + (t^8.096*y)/(g1^10*g2^14) + (2*t^8.096*y)/(g1^8*g2^8) + (t^8.096*y)/(g1^6*g2^2) + (2*t^8.548*y)/(g1^6*g2^10) + (4*t^8.548*y)/(g1^4*g2^4) + (2*g2^2*t^8.548*y)/g1^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
819 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ | 0.6993 | 0.8587 | 0.8143 | [M:[0.9795, 0.9385, 1.0205, 1.0615, 0.8976], q:[0.5717, 0.4488], qb:[0.4898, 0.5307], phi:[0.4898]] | t^2.693 + t^2.816 + 2*t^2.939 + 2*t^3.061 + t^3.184 + t^4.162 + t^4.285 + 2*t^4.408 + 2*t^4.531 + 2*t^4.654 + t^4.777 + t^4.899 + t^5.385 + t^5.508 + 2*t^5.631 + 2*t^5.754 + 3*t^5.877 + t^6. - t^4.469/y - t^4.469*y | detail | |
822 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{6}$ | 0.7284 | 0.9028 | 0.8068 | [M:[0.9169, 0.7506, 1.0831, 0.9169, 0.9169, 0.9169], q:[0.6247, 0.4584], qb:[0.6247, 0.4584], phi:[0.4584]] | t^2.252 + 5*t^2.751 + t^3.249 + 3*t^4.126 + t^4.503 + 4*t^4.625 + 5*t^5.002 + 3*t^5.124 + 12*t^5.501 - 3*t^6. - t^4.375/y - t^4.375*y | detail | |
821 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}^{2}$ | 0.7167 | 0.883 | 0.8116 | [M:[0.9355, 0.8065, 1.0645, 1.0, 0.871], q:[0.629, 0.4355], qb:[0.5645, 0.5], phi:[0.4678]] | t^2.42 + t^2.613 + 2*t^2.807 + t^3. + 2*t^3.193 + t^4.016 + t^4.21 + 2*t^4.403 + 2*t^4.597 + 2*t^4.79 + t^4.839 + t^4.984 + t^5.033 + t^5.177 + 3*t^5.226 + 2*t^5.42 + 4*t^5.613 + t^5.807 + t^6. - t^4.403/y - t^4.403*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
336 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ | 0.7904 | 0.9838 | 0.8034 | [M:[0.7619, 0.7619, 0.7619, 0.7619, 0.7619], q:[0.619, 0.619], qb:[0.619, 0.619], phi:[0.381]] | 6*t^2.286 + t^3.714 + 21*t^4.571 + 10*t^4.857 - 10*t^6. - t^4.143/y - t^4.143*y | detail | {a: 1859/2352, c: 1157/1176, M1: 16/21, M2: 16/21, M3: 16/21, M4: 16/21, M5: 16/21, q1: 13/21, q2: 13/21, qb1: 13/21, qb2: 13/21, phi1: 8/21} |