Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5249 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1^2$ + $ M_2M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_1\tilde{q}_1$ + $ M_8\phi_1\tilde{q}_1^2$ | 0.6232 | 0.8018 | 0.7773 | [X:[1.5714], M:[1.0, 0.7143, 1.2857, 0.4286, 0.7143, 0.9107, 0.8571, 0.8036], q:[0.3304, 0.6696], qb:[0.3839, 0.9018], phi:[0.4286]] | [X:[[0]], M:[[0], [0], [0], [0], [0], [-2], [0], [2]], q:[[1], [-1]], qb:[[-1], [1]], phi:[[0]]] | 1 | {a: 54723/87808, c: 70403/87808, X1: 11/7, M1: 1, M2: 5/7, M3: 9/7, M4: 3/7, M5: 5/7, M6: 51/56, M7: 6/7, M8: 45/56, q1: 37/112, q2: 75/112, qb1: 43/112, qb2: 101/112, phi1: 3/7} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_5$, $ M_8$, $ M_7$, $ \phi_1^2$, $ M_6$, $ M_1$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_2M_5$, $ M_5^2$, $ \phi_1q_1q_2$, $ M_2M_8$, $ M_5M_8$, $ M_2M_7$, $ M_5M_7$, $ M_2\phi_1^2$, $ M_5\phi_1^2$, $ X_1$, $ M_8^2$, $ M_2M_6$, $ M_5M_6$, $ M_7M_8$, $ M_8\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_2$, $ M_1M_5$, $ M_7^2$, $ M_6M_8$, $ M_7\phi_1^2$, $ \phi_1^4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_6M_7$, $ M_6\phi_1^2$, $ \phi_1q_2^2$, $ M_5q_2\tilde{q}_1$, $ M_1M_8$, $ M_6^2$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_8q_2\tilde{q}_1$, $ M_1M_6$, $ M_7q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ M_6q_2\tilde{q}_1$ | . | -2 | 2*t^2.14 + t^2.41 + 2*t^2.57 + t^2.73 + t^3. + t^3.16 + t^3.7 + 3*t^4.29 + 2*t^4.55 + 5*t^4.71 + t^4.82 + 2*t^4.88 + 2*t^4.98 + 6*t^5.14 + 4*t^5.3 + t^5.41 + t^5.46 + 2*t^5.57 + 2*t^5.73 + t^5.84 + t^5.89 - 2*t^6. + t^6.11 + t^6.27 + t^6.32 + 3*t^6.43 - t^6.59 + 3*t^6.7 + 5*t^6.86 + 2*t^6.96 + t^7.02 + 3*t^7.12 + t^7.23 + 10*t^7.29 + 3*t^7.39 + 7*t^7.45 + 5*t^7.55 + 2*t^7.61 + 9*t^7.71 + t^7.82 + 3*t^7.87 + 5*t^7.88 + 2*t^7.98 + 4*t^8.04 - 3*t^8.14 + t^8.2 + t^8.25 + 2*t^8.3 - 2*t^8.41 + 4*t^8.46 + t^8.52 - 3*t^8.57 + t^8.62 + t^8.68 - 5*t^8.73 + 3*t^8.84 + t^8.89 - t^4.29/y - t^6.43/y - t^6.7/y - (2*t^6.86)/y - t^7.02/y + t^7.29/y + (3*t^7.55)/y + (6*t^7.71)/y + (3*t^7.88)/y + (2*t^7.98)/y + (5*t^8.14)/y + (4*t^8.3)/y + t^8.41/y + (2*t^8.57)/y + (3*t^8.73)/y + t^8.84/y + t^8.89/y - t^4.29*y - t^6.43*y - t^6.7*y - 2*t^6.86*y - t^7.02*y + t^7.29*y + 3*t^7.55*y + 6*t^7.71*y + 3*t^7.88*y + 2*t^7.98*y + 5*t^8.14*y + 4*t^8.3*y + t^8.41*y + 2*t^8.57*y + 3*t^8.73*y + t^8.84*y + t^8.89*y | 2*t^2.14 + g1^2*t^2.41 + 2*t^2.57 + t^2.73/g1^2 + t^3. + t^3.16/g1^2 + g1^2*t^3.7 + 3*t^4.29 + 2*g1^2*t^4.55 + 5*t^4.71 + g1^4*t^4.82 + (2*t^4.88)/g1^2 + 2*g1^2*t^4.98 + 6*t^5.14 + (4*t^5.3)/g1^2 + g1^2*t^5.41 + t^5.46/g1^4 + 2*t^5.57 + (2*t^5.73)/g1^2 + g1^2*t^5.84 + t^5.89/g1^4 - 2*t^6. + g1^4*t^6.11 + g1^2*t^6.27 + t^6.32/g1^4 + 3*t^6.43 - t^6.59/g1^2 + 3*g1^2*t^6.7 + 5*t^6.86 + 2*g1^4*t^6.96 + t^7.02/g1^2 + 3*g1^2*t^7.12 + g1^6*t^7.23 + 10*t^7.29 + 3*g1^4*t^7.39 + (7*t^7.45)/g1^2 + 5*g1^2*t^7.55 + (2*t^7.61)/g1^4 + 9*t^7.71 + g1^4*t^7.82 + (3*t^7.87)/g1^2 + (5*t^7.88)/g1^2 + 2*g1^2*t^7.98 + (4*t^8.04)/g1^4 - 3*t^8.14 + t^8.2/g1^6 + g1^4*t^8.25 + (2*t^8.3)/g1^2 - 2*g1^2*t^8.41 + (4*t^8.46)/g1^4 + g1^6*t^8.52 - 3*t^8.57 + t^8.62/g1^6 + g1^4*t^8.68 - (5*t^8.73)/g1^2 + 3*g1^2*t^8.84 + t^8.89/g1^4 - t^4.29/y - t^6.43/y - (g1^2*t^6.7)/y - (2*t^6.86)/y - t^7.02/(g1^2*y) + t^7.29/y + (3*g1^2*t^7.55)/y + (6*t^7.71)/y + (3*t^7.88)/(g1^2*y) + (2*g1^2*t^7.98)/y + (5*t^8.14)/y + (4*t^8.3)/(g1^2*y) + (g1^2*t^8.41)/y + (2*t^8.57)/y + (3*t^8.73)/(g1^2*y) + (g1^2*t^8.84)/y + t^8.89/(g1^4*y) - t^4.29*y - t^6.43*y - g1^2*t^6.7*y - 2*t^6.86*y - (t^7.02*y)/g1^2 + t^7.29*y + 3*g1^2*t^7.55*y + 6*t^7.71*y + (3*t^7.88*y)/g1^2 + 2*g1^2*t^7.98*y + 5*t^8.14*y + (4*t^8.3*y)/g1^2 + g1^2*t^8.41*y + 2*t^8.57*y + (3*t^8.73*y)/g1^2 + g1^2*t^8.84*y + (t^8.89*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3571 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1^2$ + $ M_2M_3$ + $ M_3M_5$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_1\tilde{q}_1$ | 0.6081 | 0.7767 | 0.7829 | [X:[1.5714], M:[1.0, 0.7143, 1.2857, 0.4286, 0.7143, 0.8731, 0.8571], q:[0.3491, 0.6509], qb:[0.3651, 0.9206], phi:[0.4286]] | 2*t^2.14 + 2*t^2.57 + t^2.62 + t^3. + t^3.05 + t^3.48 + t^3.81 + 3*t^4.29 + 5*t^4.71 + 2*t^4.76 + 5*t^5.14 + 4*t^5.19 + t^5.24 + t^5.57 + 4*t^5.62 + t^5.67 + t^5.95 - 2*t^6. - t^4.29/y - t^4.29*y | detail |