Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5229 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\phi_1^2$ + $ \phi_1q_2^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ | 0.6891 | 0.8807 | 0.7825 | [X:[], M:[0.8216, 1.0595, 1.1784, 0.7027, 1.0595, 0.7027, 0.7081, 1.054], q:[0.4135, 0.7649], qb:[0.4081, 0.5325], phi:[0.4703]] | [X:[], M:[[-12], [4], [12], [-20], [4], [-20], [14], [-30]], q:[[11], [1]], qb:[[-23], [19]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ M_6$, $ M_7$, $ M_1$, $ M_8$, $ M_2$, $ M_5$, $ q_2\tilde{q}_1$, $ M_3$, $ \phi_1\tilde{q}_1^2$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ M_4M_7$, $ M_6M_7$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_7^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_4$, $ M_1M_6$, $ M_1M_7$, $ \phi_1\tilde{q}_2^2$, $ M_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_8$, $ M_6M_8$, $ M_2M_4$, $ M_4M_5$, $ M_2M_6$, $ M_5M_6$, $ M_7M_8$, $ M_2M_7$, $ M_5M_7$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_8$, $ M_4q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_1M_2$, $ M_3M_4$, $ M_1M_5$, $ M_3M_6$, $ M_7q_2\tilde{q}_1$, $ M_3M_7$, $ M_4\phi_1\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1^2$, $ M_7\phi_1\tilde{q}_1^2$ | . | -2 | 2*t^2.11 + t^2.12 + t^2.46 + t^3.16 + 2*t^3.18 + t^3.52 + t^3.54 + t^3.86 + 3*t^4.22 + 3*t^4.23 + 2*t^4.25 + 2*t^4.57 + t^4.59 + t^4.61 + t^4.93 + 2*t^5.27 + 5*t^5.29 + 2*t^5.3 + 2*t^5.63 + 4*t^5.64 + t^5.66 + 2*t^5.97 + t^5.98 - 2*t^6. - t^6.02 + 6*t^6.32 + 6*t^6.34 + 5*t^6.36 + t^6.37 + 4*t^6.68 + 4*t^6.7 + 4*t^6.71 + t^6.73 + t^7.02 + 3*t^7.04 - t^7.05 - t^7.07 + 4*t^7.38 + 9*t^7.39 + 4*t^7.41 + 2*t^7.43 + t^7.72 + 3*t^7.73 + 6*t^7.75 + 4*t^7.77 + t^7.78 + 3*t^8.08 + 3*t^8.09 - 3*t^8.11 - 6*t^8.12 - t^8.14 + 9*t^8.43 + 11*t^8.45 + 8*t^8.46 + t^8.48 + t^8.5 + 7*t^8.79 + 7*t^8.81 + 7*t^8.82 + 4*t^8.84 + 2*t^8.85 - t^4.41/y - (2*t^6.52)/y - t^6.54/y + t^7.22/y + (3*t^7.23)/y + t^7.25/y + t^7.57/y + (2*t^8.27)/y + (6*t^8.29)/y + (4*t^8.3)/y + (3*t^8.64)/y + (2*t^8.97)/y + (2*t^8.98)/y - t^4.41*y - 2*t^6.52*y - t^6.54*y + t^7.22*y + 3*t^7.23*y + t^7.25*y + t^7.57*y + 2*t^8.27*y + 6*t^8.29*y + 4*t^8.3*y + 3*t^8.64*y + 2*t^8.97*y + 2*t^8.98*y | (2*t^2.11)/g1^20 + g1^14*t^2.12 + t^2.46/g1^12 + t^3.16/g1^30 + 2*g1^4*t^3.18 + t^3.52/g1^22 + g1^12*t^3.54 + t^3.86/g1^48 + (3*t^4.22)/g1^40 + (3*t^4.23)/g1^6 + 2*g1^28*t^4.25 + (2*t^4.57)/g1^32 + g1^2*t^4.59 + g1^36*t^4.61 + t^4.93/g1^24 + (2*t^5.27)/g1^50 + (5*t^5.29)/g1^16 + 2*g1^18*t^5.3 + (2*t^5.63)/g1^42 + (4*t^5.64)/g1^8 + g1^26*t^5.66 + (2*t^5.97)/g1^68 + t^5.98/g1^34 - 2*t^6. - g1^34*t^6.02 + (6*t^6.32)/g1^60 + (6*t^6.34)/g1^26 + 5*g1^8*t^6.36 + g1^42*t^6.37 + (4*t^6.68)/g1^52 + (4*t^6.7)/g1^18 + 4*g1^16*t^6.71 + g1^50*t^6.73 + t^7.02/g1^78 + (3*t^7.04)/g1^44 - t^7.05/g1^10 - g1^24*t^7.07 + (4*t^7.38)/g1^70 + (9*t^7.39)/g1^36 + (4*t^7.41)/g1^2 + 2*g1^32*t^7.43 + t^7.72/g1^96 + (3*t^7.73)/g1^62 + (6*t^7.75)/g1^28 + 4*g1^6*t^7.77 + g1^40*t^7.78 + (3*t^8.08)/g1^88 + (3*t^8.09)/g1^54 - (3*t^8.11)/g1^20 - 6*g1^14*t^8.12 - g1^48*t^8.14 + (9*t^8.43)/g1^80 + (11*t^8.45)/g1^46 + (8*t^8.46)/g1^12 + g1^22*t^8.48 + g1^56*t^8.5 + (7*t^8.79)/g1^72 + (7*t^8.81)/g1^38 + (7*t^8.82)/g1^4 + 4*g1^30*t^8.84 + 2*g1^64*t^8.85 - t^4.41/(g1^2*y) - (2*t^6.52)/(g1^22*y) - (g1^12*t^6.54)/y + t^7.22/(g1^40*y) + (3*t^7.23)/(g1^6*y) + (g1^28*t^7.25)/y + t^7.57/(g1^32*y) + (2*t^8.27)/(g1^50*y) + (6*t^8.29)/(g1^16*y) + (4*g1^18*t^8.3)/y + (3*t^8.64)/(g1^8*y) + (2*t^8.97)/(g1^68*y) + (2*t^8.98)/(g1^34*y) - (t^4.41*y)/g1^2 - (2*t^6.52*y)/g1^22 - g1^12*t^6.54*y + (t^7.22*y)/g1^40 + (3*t^7.23*y)/g1^6 + g1^28*t^7.25*y + (t^7.57*y)/g1^32 + (2*t^8.27*y)/g1^50 + (6*t^8.29*y)/g1^16 + 4*g1^18*t^8.3*y + (3*t^8.64*y)/g1^8 + (2*t^8.97*y)/g1^68 + (2*t^8.98*y)/g1^34 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3557 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_2\phi_1^2$ + $ M_5\phi_1^2$ + $ \phi_1q_2^2$ + $ M_6\phi_1q_1^2$ + $ M_7\phi_1q_1\tilde{q}_1$ | 0.6957 | 0.8901 | 0.7816 | [X:[], M:[0.8356, 1.0548, 1.1644, 0.7259, 1.0548, 0.7259, 0.6918], q:[0.4007, 0.7637], qb:[0.4348, 0.5103], phi:[0.4726]] | t^2.08 + 2*t^2.18 + t^2.51 + t^2.73 + 2*t^3.16 + t^3.49 + t^3.6 + t^4.03 + 2*t^4.15 + 3*t^4.25 + 3*t^4.36 + t^4.48 + t^4.58 + 2*t^4.68 + t^4.81 + 2*t^4.91 + t^5.01 + 3*t^5.24 + 4*t^5.34 + t^5.47 + t^5.57 + 4*t^5.67 + t^5.77 + t^5.9 - 2*t^6. - t^4.42/y - t^4.42*y | detail |