Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5195 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_1$ + $ q_1q_2\tilde{q}_2^2$ + $ M_7\phi_1q_2^2$ + $ M_8q_1\tilde{q}_2$ 0.6508 0.8561 0.7602 [X:[], M:[0.9724, 1.0827, 1.0276, 0.9173, 0.7707, 0.8258, 0.9173, 0.7707], q:[0.7431, 0.2845], qb:[0.4311, 0.4862], phi:[0.5138]] [X:[], M:[[4], [-12], [-4], [12], [-3], [-11], [12], [-3]], q:[[1], [-5]], qb:[[10], [2]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ M_5$, $ M_8$, $ q_2\tilde{q}_2$, $ M_6$, $ M_4$, $ M_7$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5M_8$, $ M_8^2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_6$, $ M_6M_8$, $ M_6q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_6^2$, $ M_4M_5$, $ M_5M_7$, $ M_4M_8$, $ M_7M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ M_4M_6$, $ M_6M_7$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_5$, $ M_3M_8$, $ M_5\phi_1^2$, $ M_8\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_4^2$, $ M_4M_7$, $ M_7^2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_3M_4$, $ M_3M_7$, $ M_4\phi_1^2$, $ M_7\phi_1^2$ . -3 t^2.15 + 3*t^2.31 + t^2.48 + 2*t^2.75 + 2*t^3.08 + t^3.85 + t^4.13 + 2*t^4.29 + 4*t^4.46 + 7*t^4.62 + 3*t^4.79 + 2*t^4.9 + t^4.95 + 6*t^5.06 + 4*t^5.23 + 5*t^5.39 + 3*t^5.5 + t^5.56 + 2*t^5.83 - 3*t^6. + 3*t^6.17 + t^6.27 + t^6.33 + 3*t^6.44 + 6*t^6.61 + 7*t^6.77 + 2*t^6.88 + 13*t^6.94 + 3*t^7.05 + 6*t^7.1 + 8*t^7.21 + 3*t^7.27 + 12*t^7.38 + t^7.43 + 8*t^7.54 + 3*t^7.65 + 11*t^7.71 + 8*t^7.82 + 2*t^7.87 + 2*t^7.98 + t^8.04 - t^8.15 + 5*t^8.26 - 8*t^8.31 + 2*t^8.42 + t^8.48 + 6*t^8.59 + t^8.64 - t^8.75 + t^8.81 + 7*t^8.92 - t^4.54/y - (2*t^6.85)/y - t^7.02/y - t^7.29/y + (4*t^7.46)/y + (3*t^7.62)/y + (4*t^7.79)/y + (2*t^7.9)/y + (7*t^8.06)/y + (6*t^8.23)/y + (6*t^8.39)/y + t^8.5/y + (2*t^8.56)/y + (4*t^8.83)/y - t^4.54*y - 2*t^6.85*y - t^7.02*y - t^7.29*y + 4*t^7.46*y + 3*t^7.62*y + 4*t^7.79*y + 2*t^7.9*y + 7*t^8.06*y + 6*t^8.23*y + 6*t^8.39*y + t^8.5*y + 2*t^8.56*y + 4*t^8.83*y g1^5*t^2.15 + (3*t^2.31)/g1^3 + t^2.48/g1^11 + 2*g1^12*t^2.75 + (2*t^3.08)/g1^4 + t^3.85/g1^5 + g1^18*t^4.13 + 2*g1^10*t^4.29 + 4*g1^2*t^4.46 + (7*t^4.62)/g1^6 + (3*t^4.79)/g1^14 + 2*g1^17*t^4.9 + t^4.95/g1^22 + 6*g1^9*t^5.06 + 4*g1*t^5.23 + (5*t^5.39)/g1^7 + 3*g1^24*t^5.5 + t^5.56/g1^15 + 2*g1^8*t^5.83 - 3*t^6. + (3*t^6.17)/g1^8 + g1^23*t^6.27 + t^6.33/g1^16 + 3*g1^15*t^6.44 + 6*g1^7*t^6.61 + (7*t^6.77)/g1 + 2*g1^30*t^6.88 + (13*t^6.94)/g1^9 + 3*g1^22*t^7.05 + (6*t^7.1)/g1^17 + 8*g1^14*t^7.21 + (3*t^7.27)/g1^25 + 12*g1^6*t^7.38 + t^7.43/g1^33 + (8*t^7.54)/g1^2 + 3*g1^29*t^7.65 + (11*t^7.71)/g1^10 + 8*g1^21*t^7.82 + (2*t^7.87)/g1^18 + 2*g1^13*t^7.98 + t^8.04/g1^26 - g1^5*t^8.15 + 5*g1^36*t^8.26 - (8*t^8.31)/g1^3 + 2*g1^28*t^8.42 + t^8.48/g1^11 + 6*g1^20*t^8.59 + t^8.64/g1^19 - g1^12*t^8.75 + t^8.81/g1^27 + 7*g1^4*t^8.92 - t^4.54/(g1^2*y) - (2*t^6.85)/(g1^5*y) - t^7.02/(g1^13*y) - (g1^10*t^7.29)/y + (4*g1^2*t^7.46)/y + (3*t^7.62)/(g1^6*y) + (4*t^7.79)/(g1^14*y) + (2*g1^17*t^7.9)/y + (7*g1^9*t^8.06)/y + (6*g1*t^8.23)/y + (6*t^8.39)/(g1^7*y) + (g1^24*t^8.5)/y + (2*t^8.56)/(g1^15*y) + (4*g1^8*t^8.83)/y - (t^4.54*y)/g1^2 - (2*t^6.85*y)/g1^5 - (t^7.02*y)/g1^13 - g1^10*t^7.29*y + 4*g1^2*t^7.46*y + (3*t^7.62*y)/g1^6 + (4*t^7.79*y)/g1^14 + 2*g1^17*t^7.9*y + 7*g1^9*t^8.06*y + 6*g1*t^8.23*y + (6*t^8.39*y)/g1^7 + g1^24*t^8.5*y + (2*t^8.56*y)/g1^15 + 4*g1^8*t^8.83*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3505 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_1$ + $ q_1q_2\tilde{q}_2^2$ + $ M_7\phi_1q_2^2$ 0.6327 0.8239 0.768 [X:[], M:[0.9706, 1.0881, 1.0294, 0.9119, 0.772, 0.8307, 0.9119], q:[0.7427, 0.2867], qb:[0.4266, 0.4853], phi:[0.5147]] t^2.14 + 2*t^2.32 + t^2.49 + 2*t^2.74 + 2*t^3.09 + t^3.68 + t^3.86 + t^4.1 + 2*t^4.28 + 3*t^4.46 + 4*t^4.63 + 2*t^4.81 + 2*t^4.88 + t^4.98 + 4*t^5.05 + 4*t^5.23 + 3*t^5.4 + 3*t^5.47 + t^5.58 + 3*t^5.82 - t^6. - t^4.54/y - t^4.54*y detail