Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5144 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_7$ + $ M_8q_1\tilde{q}_2$ 0.6431 0.8459 0.7603 [X:[], M:[1.0, 1.0041, 0.9918, 1.0041, 0.7469, 0.7429, 1.0082, 0.7469], q:[0.751, 0.249], qb:[0.5061, 0.502], phi:[0.498]] [X:[], M:[[0], [4], [-8], [4], [-3], [-7], [8], [-3]], q:[[1], [-1]], qb:[[6], [2]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_5$, $ M_8$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_1$, $ M_2$, $ M_4$, $ M_7$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ M_5M_6$, $ M_6M_8$, $ M_5^2$, $ M_5M_8$, $ M_8^2$, $ M_6q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_1M_5$, $ M_2M_6$, $ M_4M_6$, $ M_1M_8$, $ M_2M_5$, $ M_4M_5$, $ M_6M_7$, $ M_2M_8$, $ M_4M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_5M_7$, $ M_7M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_1$, $ M_6\phi_1q_2\tilde{q}_2$ $\phi_1q_2^2\tilde{q}_2^2$ -2 t^2.23 + 2*t^2.24 + t^2.25 + t^2.27 + t^3. + 2*t^3.01 + t^3.02 + t^3.75 + t^4.46 + 2*t^4.47 + 4*t^4.48 + 3*t^4.49 + 4*t^4.51 + 2*t^4.52 + 2*t^4.53 + 3*t^5.24 + 6*t^5.25 + 5*t^5.27 + 3*t^5.28 + t^5.29 + t^5.98 - 2*t^6. + t^6.01 + 3*t^6.02 + 2*t^6.04 + t^6.05 + t^6.69 + 2*t^6.7 + 4*t^6.71 + 6*t^6.72 + 5*t^6.73 + 7*t^6.75 + 6*t^6.76 + 5*t^6.77 + 2*t^6.78 + 2*t^6.8 + t^7.47 + 5*t^7.48 + 9*t^7.49 + 8*t^7.51 + 9*t^7.52 + 8*t^7.53 + 5*t^7.54 + 2*t^7.56 + t^8.2 - 4*t^8.23 - 8*t^8.24 - 2*t^8.25 + 3*t^8.27 + 7*t^8.28 + 6*t^8.29 + 3*t^8.3 + t^8.31 + t^8.91 + 2*t^8.93 + 4*t^8.94 + 6*t^8.95 + 9*t^8.96 + 7*t^8.98 + 10*t^8.99 - t^4.49/y - t^6.72/y - (2*t^6.73)/y + (2*t^7.47)/y + (3*t^7.48)/y + (3*t^7.49)/y + t^7.51/y + t^7.52/y + t^8.23/y + (4*t^8.24)/y + (8*t^8.25)/y + (6*t^8.27)/y + (3*t^8.28)/y + t^8.29/y - t^8.95/y - (2*t^8.96)/y - (2*t^8.98)/y + (2*t^8.99)/y - t^4.49*y - t^6.72*y - 2*t^6.73*y + 2*t^7.47*y + 3*t^7.48*y + 3*t^7.49*y + t^7.51*y + t^7.52*y + t^8.23*y + 4*t^8.24*y + 8*t^8.25*y + 6*t^8.27*y + 3*t^8.28*y + t^8.29*y - t^8.95*y - 2*t^8.96*y - 2*t^8.98*y + 2*t^8.99*y t^2.23/g1^7 + (2*t^2.24)/g1^3 + g1*t^2.25 + g1^5*t^2.27 + t^3. + 2*g1^4*t^3.01 + g1^8*t^3.02 + t^3.75/g1 + t^4.46/g1^14 + (2*t^4.47)/g1^10 + (4*t^4.48)/g1^6 + (3*t^4.49)/g1^2 + 4*g1^2*t^4.51 + 2*g1^6*t^4.52 + 2*g1^10*t^4.53 + (3*t^5.24)/g1^3 + 6*g1*t^5.25 + 5*g1^5*t^5.27 + 3*g1^9*t^5.28 + g1^13*t^5.29 + t^5.98/g1^8 - 2*t^6. + g1^4*t^6.01 + 3*g1^8*t^6.02 + 2*g1^12*t^6.04 + g1^16*t^6.05 + t^6.69/g1^21 + (2*t^6.7)/g1^17 + (4*t^6.71)/g1^13 + (6*t^6.72)/g1^9 + (5*t^6.73)/g1^5 + (7*t^6.75)/g1 + 6*g1^3*t^6.76 + 5*g1^7*t^6.77 + 2*g1^11*t^6.78 + 2*g1^15*t^6.8 + t^7.47/g1^10 + (5*t^7.48)/g1^6 + (9*t^7.49)/g1^2 + 8*g1^2*t^7.51 + 9*g1^6*t^7.52 + 8*g1^10*t^7.53 + 5*g1^14*t^7.54 + 2*g1^18*t^7.56 + t^8.2/g1^15 - (4*t^8.23)/g1^7 - (8*t^8.24)/g1^3 - 2*g1*t^8.25 + 3*g1^5*t^8.27 + 7*g1^9*t^8.28 + 6*g1^13*t^8.29 + 3*g1^17*t^8.3 + g1^21*t^8.31 + t^8.91/g1^28 + (2*t^8.93)/g1^24 + (4*t^8.94)/g1^20 + (6*t^8.95)/g1^16 + (9*t^8.96)/g1^12 + (7*t^8.98)/g1^8 + (10*t^8.99)/g1^4 - t^4.49/(g1^2*y) - t^6.72/(g1^9*y) - (2*t^6.73)/(g1^5*y) + (2*t^7.47)/(g1^10*y) + (3*t^7.48)/(g1^6*y) + (3*t^7.49)/(g1^2*y) + (g1^2*t^7.51)/y + (g1^6*t^7.52)/y + t^8.23/(g1^7*y) + (4*t^8.24)/(g1^3*y) + (8*g1*t^8.25)/y + (6*g1^5*t^8.27)/y + (3*g1^9*t^8.28)/y + (g1^13*t^8.29)/y - t^8.95/(g1^16*y) - (2*t^8.96)/(g1^12*y) - (2*t^8.98)/(g1^8*y) + (2*t^8.99)/(g1^4*y) - (t^4.49*y)/g1^2 - (t^6.72*y)/g1^9 - (2*t^6.73*y)/g1^5 + (2*t^7.47*y)/g1^10 + (3*t^7.48*y)/g1^6 + (3*t^7.49*y)/g1^2 + g1^2*t^7.51*y + g1^6*t^7.52*y + (t^8.23*y)/g1^7 + (4*t^8.24*y)/g1^3 + 8*g1*t^8.25*y + 6*g1^5*t^8.27*y + 3*g1^9*t^8.28*y + g1^13*t^8.29*y - (t^8.95*y)/g1^16 - (2*t^8.96*y)/g1^12 - (2*t^8.98*y)/g1^8 + (2*t^8.99*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3466 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_3M_7$ 0.624 0.8116 0.7689 [X:[], M:[1.0, 0.9996, 1.0009, 0.9996, 0.7503, 0.7508, 0.9991], q:[0.7499, 0.2501], qb:[0.4993, 0.4998], phi:[0.5002]] 4*t^2.25 + 4*t^3. + 2*t^3.75 + 13*t^4.5 + 14*t^5.25 + t^5.99 + 8*t^6. - t^4.5/y - t^4.5*y detail