Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5142 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1q_2^2$ + $ M_6M_8$ + $ M_9\phi_1\tilde{q}_1^2$ | 0.6879 | 0.8801 | 0.7817 | [X:[], M:[0.8075, 1.2298, 0.7329, 0.8447, 0.6957, 1.1553, 0.7329, 0.8447, 0.8075], q:[0.7516, 0.441], qb:[0.4037, 0.8633], phi:[0.3851]] | [X:[], M:[[8, 0], [-2, 2], [-4, -4], [-3, 3], [7, -7], [3, -3], [13, -5], [-3, 3], [-9, 1]], q:[[-1, -3], [-7, 3]], qb:[[4, 0], [0, 4]], phi:[[1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_7$, $ M_3$, $ M_1$, $ M_9$, $ M_4$, $ M_8$, $ M_2$, $ \phi_1q_2\tilde{q}_1$, $ M_5^2$, $ M_5M_7$, $ M_3M_5$, $ M_7^2$, $ M_3M_7$, $ M_3^2$, $ M_1M_5$, $ M_5M_9$, $ M_1M_7$, $ M_1M_3$, $ M_4M_5$, $ M_5M_8$, $ M_7M_9$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_9$, $ M_4M_7$, $ M_7M_8$, $ M_3M_4$, $ M_3M_8$, $ \phi_1q_1q_2$, $ M_1^2$, $ M_1M_9$, $ q_1\tilde{q}_2$, $ M_9^2$, $ M_1M_4$, $ M_1M_8$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_9$, $ M_8M_9$, $ M_4^2$, $ M_4M_8$, $ M_8^2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_5$, $ M_5\phi_1q_2\tilde{q}_1$, $ M_2M_7$, $ M_7\phi_1q_2\tilde{q}_1$, $ M_2M_3$ | . | -3 | t^2.09 + 2*t^2.2 + 2*t^2.42 + 2*t^2.53 + 2*t^3.69 + t^4.17 + 2*t^4.29 + 3*t^4.4 + 2*t^4.51 + 6*t^4.62 + 4*t^4.73 + 4*t^4.84 + 4*t^4.96 + 3*t^5.07 + t^5.78 + 2*t^5.89 - 3*t^6. + 2*t^6.11 + 3*t^6.22 + t^6.26 + 2*t^6.37 + 3*t^6.48 + 6*t^6.6 + 6*t^6.71 + 10*t^6.82 + 9*t^6.93 + 10*t^7.04 + 8*t^7.16 + 8*t^7.27 + 7*t^7.38 + 4*t^7.49 + 3*t^7.6 + t^7.86 - t^8.09 - 6*t^8.2 + t^8.31 + t^8.35 - 6*t^8.42 + 2*t^8.46 - 4*t^8.53 + 3*t^8.57 + 6*t^8.68 + 3*t^8.76 + 11*t^8.8 + 10*t^8.91 - t^4.16/y - t^6.24/y - (2*t^6.35)/y - (2*t^6.58)/y - t^6.69/y + (2*t^7.29)/y + t^7.4/y + (2*t^7.51)/y + (7*t^7.62)/y + (6*t^7.73)/y + t^7.84/y + (6*t^7.96)/y + (2*t^8.07)/y - t^8.33/y - (2*t^8.44)/y - (3*t^8.55)/y - (2*t^8.66)/y - (3*t^8.78)/y + (2*t^8.89)/y - t^4.16*y - t^6.24*y - 2*t^6.35*y - 2*t^6.58*y - t^6.69*y + 2*t^7.29*y + t^7.4*y + 2*t^7.51*y + 7*t^7.62*y + 6*t^7.73*y + t^7.84*y + 6*t^7.96*y + 2*t^8.07*y - t^8.33*y - 2*t^8.44*y - 3*t^8.55*y - 2*t^8.66*y - 3*t^8.78*y + 2*t^8.89*y | (g1^7*t^2.09)/g2^7 + (g1^13*t^2.2)/g2^5 + t^2.2/(g1^4*g2^4) + g1^8*t^2.42 + (g2*t^2.42)/g1^9 + (2*g2^3*t^2.53)/g1^3 + (2*g2^2*t^3.69)/g1^2 + (g1^14*t^4.17)/g2^14 + (g1^20*t^4.29)/g2^12 + (g1^3*t^4.29)/g2^11 + (g1^26*t^4.4)/g2^10 + (g1^9*t^4.4)/g2^9 + t^4.4/(g1^8*g2^8) + (g1^15*t^4.51)/g2^7 + t^4.51/(g1^2*g2^6) + (g1^21*t^4.62)/g2^5 + (4*g1^4*t^4.62)/g2^4 + t^4.62/(g1^13*g2^3) + (2*g1^10*t^4.73)/g2^2 + (2*t^4.73)/(g1^7*g2) + g1^16*t^4.84 + (2*g2*t^4.84)/g1 + (g2^2*t^4.84)/g1^18 + 2*g1^5*g2^3*t^4.96 + (2*g2^4*t^4.96)/g1^12 + (3*g2^6*t^5.07)/g1^6 + (g1^5*t^5.78)/g2^5 + (g1^11*t^5.89)/g2^3 + t^5.89/(g1^6*g2^2) - 3*t^6. + g1^6*g2^2*t^6.11 + (g2^3*t^6.11)/g1^11 + (3*g2^5*t^6.22)/g1^5 + (g1^21*t^6.26)/g2^21 + (g1^27*t^6.37)/g2^19 + (g1^10*t^6.37)/g2^18 + (g1^33*t^6.48)/g2^17 + (g1^16*t^6.48)/g2^16 + t^6.48/(g1*g2^15) + (g1^39*t^6.6)/g2^15 + (2*g1^22*t^6.6)/g2^14 + (2*g1^5*t^6.6)/g2^13 + t^6.6/(g1^12*g2^12) + (g1^28*t^6.71)/g2^12 + (4*g1^11*t^6.71)/g2^11 + t^6.71/(g1^6*g2^10) + (g1^34*t^6.82)/g2^10 + (4*g1^17*t^6.82)/g2^9 + (4*t^6.82)/g2^8 + t^6.82/(g1^17*g2^7) + (3*g1^23*t^6.93)/g2^7 + (3*g1^6*t^6.93)/g2^6 + (3*t^6.93)/(g1^11*g2^5) + (g1^29*t^7.04)/g2^5 + (4*g1^12*t^7.04)/g2^4 + (4*t^7.04)/(g1^5*g2^3) + t^7.04/(g1^22*g2^2) + (2*t^7.16)/g1^16 + (2*g1^18*t^7.16)/g2^2 + (4*g1*t^7.16)/g2 + g1^24*t^7.27 + 3*g1^7*g2*t^7.27 + (3*g2^2*t^7.27)/g1^10 + (g2^3*t^7.27)/g1^27 + 2*g1^13*g2^3*t^7.38 + (3*g2^4*t^7.38)/g1^4 + (2*g2^5*t^7.38)/g1^21 + 2*g1^2*g2^6*t^7.49 + (2*g2^7*t^7.49)/g1^15 + (3*g2^9*t^7.6)/g1^9 + (g1^12*t^7.86)/g2^12 + (g1^24*t^8.09)/g2^8 - (3*g1^7*t^8.09)/g2^7 + t^8.09/(g1^10*g2^6) - (3*g1^13*t^8.2)/g2^5 - (3*t^8.2)/(g1^4*g2^4) + (g1^2*t^8.31)/g2^2 + (g1^28*t^8.35)/g2^28 - 3*g1^8*t^8.42 - (3*g2*t^8.42)/g1^9 + (g1^34*t^8.46)/g2^26 + (g1^17*t^8.46)/g2^25 + g1^14*g2^2*t^8.53 - (6*g2^3*t^8.53)/g1^3 + (g2^4*t^8.53)/g1^20 + (g1^40*t^8.57)/g2^24 + (g1^23*t^8.57)/g2^23 + (g1^6*t^8.57)/g2^22 + (g1^46*t^8.68)/g2^22 + (2*g1^29*t^8.68)/g2^21 + (2*g1^12*t^8.68)/g2^20 + t^8.68/(g1^5*g2^19) + (3*g2^8*t^8.76)/g1^8 + (g1^52*t^8.8)/g2^20 + (2*g1^35*t^8.8)/g2^19 + (5*g1^18*t^8.8)/g2^18 + (2*g1*t^8.8)/g2^17 + t^8.8/(g1^16*g2^16) + (g1^41*t^8.91)/g2^17 + (4*g1^24*t^8.91)/g2^16 + (4*g1^7*t^8.91)/g2^15 + t^8.91/(g1^10*g2^14) - (g1*t^4.16)/(g2*y) - (g1^8*t^6.24)/(g2^8*y) - (g1^14*t^6.35)/(g2^6*y) - t^6.35/(g1^3*g2^5*y) - t^6.58/(g1^8*y) - (g1^9*t^6.58)/(g2*y) - (g2^2*t^6.69)/(g1^2*y) + (g1^20*t^7.29)/(g2^12*y) + (g1^3*t^7.29)/(g2^11*y) + (g1^9*t^7.4)/(g2^9*y) + (g1^15*t^7.51)/(g2^7*y) + t^7.51/(g1^2*g2^6*y) + (g1^21*t^7.62)/(g2^5*y) + (5*g1^4*t^7.62)/(g2^4*y) + t^7.62/(g1^13*g2^3*y) + (3*g1^10*t^7.73)/(g2^2*y) + (3*t^7.73)/(g1^7*g2*y) + (g2*t^7.84)/(g1*y) + (3*g1^5*g2^3*t^7.96)/y + (3*g2^4*t^7.96)/(g1^12*y) + (2*g2^6*t^8.07)/(g1^6*y) - (g1^15*t^8.33)/(g2^15*y) - (g1^21*t^8.44)/(g2^13*y) - (g1^4*t^8.44)/(g2^12*y) - (g1^27*t^8.55)/(g2^11*y) - (g1^10*t^8.55)/(g2^10*y) - t^8.55/(g1^7*g2^9*y) - (g1^16*t^8.66)/(g2^8*y) - t^8.66/(g1*g2^7*y) - (g1^22*t^8.78)/(g2^6*y) - (g1^5*t^8.78)/(g2^5*y) - t^8.78/(g1^12*g2^4*y) + (g1^11*t^8.89)/(g2^3*y) + t^8.89/(g1^6*g2^2*y) - (g1*t^4.16*y)/g2 - (g1^8*t^6.24*y)/g2^8 - (g1^14*t^6.35*y)/g2^6 - (t^6.35*y)/(g1^3*g2^5) - (t^6.58*y)/g1^8 - (g1^9*t^6.58*y)/g2 - (g2^2*t^6.69*y)/g1^2 + (g1^20*t^7.29*y)/g2^12 + (g1^3*t^7.29*y)/g2^11 + (g1^9*t^7.4*y)/g2^9 + (g1^15*t^7.51*y)/g2^7 + (t^7.51*y)/(g1^2*g2^6) + (g1^21*t^7.62*y)/g2^5 + (5*g1^4*t^7.62*y)/g2^4 + (t^7.62*y)/(g1^13*g2^3) + (3*g1^10*t^7.73*y)/g2^2 + (3*t^7.73*y)/(g1^7*g2) + (g2*t^7.84*y)/g1 + 3*g1^5*g2^3*t^7.96*y + (3*g2^4*t^7.96*y)/g1^12 + (2*g2^6*t^8.07*y)/g1^6 - (g1^15*t^8.33*y)/g2^15 - (g1^21*t^8.44*y)/g2^13 - (g1^4*t^8.44*y)/g2^12 - (g1^27*t^8.55*y)/g2^11 - (g1^10*t^8.55*y)/g2^10 - (t^8.55*y)/(g1^7*g2^9) - (g1^16*t^8.66*y)/g2^8 - (t^8.66*y)/(g1*g2^7) - (g1^22*t^8.78*y)/g2^6 - (g1^5*t^8.78*y)/g2^5 - (t^8.78*y)/(g1^12*g2^4) + (g1^11*t^8.89*y)/g2^3 + (t^8.89*y)/(g1^6*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3482 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1q_2^2$ + $ M_6M_8$ | 0.6727 | 0.8545 | 0.7872 | [X:[], M:[0.7831, 1.2306, 0.7556, 0.8459, 0.6928, 1.1541, 0.7066, 0.8459], q:[0.7625, 0.4544], qb:[0.3916, 0.8528], phi:[0.3847]] | t^2.08 + t^2.12 + t^2.27 + t^2.35 + 2*t^2.54 + t^3.5 + 2*t^3.69 + t^4.16 + t^4.2 + t^4.24 + t^4.35 + t^4.39 + t^4.43 + t^4.47 + t^4.53 + 3*t^4.62 + 2*t^4.66 + t^4.7 + 2*t^4.8 + t^4.85 + 2*t^4.89 + 3*t^5.08 + t^5.58 + t^5.62 + 2*t^5.77 + t^5.81 + t^5.85 + t^5.96 - 3*t^6. - t^4.15/y - t^4.15*y | detail |