Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
51 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ 0.5876 0.6839 0.8592 [M:[1.274], q:[0.8185, 0.8185], qb:[0.4555, 0.4555], phi:[0.363]] [M:[[0, 2, 2]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -9 t^2.733 + 8*t^3.822 + t^4.911 + t^5.466 - 9*t^6. + 8*t^6.555 - 8*t^7.089 + 28*t^7.644 + t^8.178 + t^8.199 - 9*t^8.733 - t^4.089/y - t^4.089*y g2^3*g3^3*t^2.733 + g1*g2^3*t^3.822 + (g2^5*t^3.822)/g3 + (g2^4*g3*t^3.822)/g1 + 2*g2^2*g3^2*t^3.822 + g1*g3^3*t^3.822 + (g2*g3^4*t^3.822)/g1 + (g3^5*t^3.822)/g2 + g2*g3*t^4.911 + g2^6*g3^6*t^5.466 - 3*t^6. - (g2^3*t^6.)/g3^3 - (g1*g2*t^6.)/g3^2 - (g2^2*t^6.)/(g1*g3) - (g1*g3*t^6.)/g2^2 - (g3^2*t^6.)/(g1*g2) - (g3^3*t^6.)/g2^3 + g2^8*g3^2*t^6.555 + g1*g2^6*g3^3*t^6.555 + (g2^7*g3^4*t^6.555)/g1 + 2*g2^5*g3^5*t^6.555 + g1*g2^3*g3^6*t^6.555 + (g2^4*g3^7*t^6.555)/g1 + g2^2*g3^8*t^6.555 - (g1*t^7.089)/g2^3 - (g2^2*t^7.089)/g3^4 - (g1*t^7.089)/g3^3 - (g2*t^7.089)/(g1*g3^2) - (2*t^7.089)/(g2*g3) - (g3*t^7.089)/(g1*g2^2) - (g3^2*t^7.089)/g2^4 + g1^2*g2^6*t^7.644 + (g2^9*t^7.644)/g1 + (g2^10*t^7.644)/g3^2 + (g1*g2^8*t^7.644)/g3 + 2*g2^7*g3*t^7.644 + 2*g1*g2^5*g3^2*t^7.644 + (g2^8*g3^2*t^7.644)/g1^2 + g1^2*g2^3*g3^3*t^7.644 + (2*g2^6*g3^3*t^7.644)/g1 + 4*g2^4*g3^4*t^7.644 + 2*g1*g2^2*g3^5*t^7.644 + (g2^5*g3^5*t^7.644)/g1^2 + g1^2*g3^6*t^7.644 + (2*g2^3*g3^6*t^7.644)/g1 + 2*g2*g3^7*t^7.644 + (g1*g3^8*t^7.644)/g2 + (g2^2*g3^8*t^7.644)/g1^2 + (g3^9*t^7.644)/g1 + (g3^10*t^7.644)/g2^2 + t^8.178/(g2^2*g3^2) + g2^9*g3^9*t^8.199 - g2^6*t^8.733 - g1*g2^4*g3*t^8.733 - (g2^5*g3^2*t^8.733)/g1 - 3*g2^3*g3^3*t^8.733 - g1*g2*g3^4*t^8.733 - (g2^2*g3^5*t^8.733)/g1 - g3^6*t^8.733 - t^4.089/(g2*g3*y) - (t^4.089*y)/(g2*g3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
39 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ 0.6076 0.7195 0.8446 [q:[0.8211, 0.8211], qb:[0.4632, 0.4632], phi:[0.3578]] t^2.147 + t^2.779 + 7*t^3.853 + t^4.294 + 2*t^4.926 + t^5.559 - 2*t^6. - t^4.074/y - t^4.074*y detail