Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
51 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ 0.5876 0.6839 0.8592 [X:[], M:[1.274], q:[0.8185, 0.8185], qb:[0.4555, 0.4555], phi:[0.363]] [X:[], M:[[0, 2, 2]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_1\tilde{q}_1$, $ M_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_1q_2$, $ \tilde{q}_1^2\tilde{q}_2^2$ . -9 t^2.73 + 8*t^3.82 + t^4.91 + t^5.47 - 9*t^6. + 8*t^6.55 - 8*t^7.09 + 28*t^7.64 + t^8.18 + t^8.2 - 9*t^8.73 - t^4.09/y - t^4.09*y g2^3*g3^3*t^2.73 + g1*g2^3*t^3.82 + (g2^5*t^3.82)/g3 + (g2^4*g3*t^3.82)/g1 + 2*g2^2*g3^2*t^3.82 + g1*g3^3*t^3.82 + (g2*g3^4*t^3.82)/g1 + (g3^5*t^3.82)/g2 + g2*g3*t^4.91 + g2^6*g3^6*t^5.47 - 3*t^6. - (g2^3*t^6.)/g3^3 - (g1*g2*t^6.)/g3^2 - (g2^2*t^6.)/(g1*g3) - (g1*g3*t^6.)/g2^2 - (g3^2*t^6.)/(g1*g2) - (g3^3*t^6.)/g2^3 + g2^8*g3^2*t^6.55 + g1*g2^6*g3^3*t^6.55 + (g2^7*g3^4*t^6.55)/g1 + 2*g2^5*g3^5*t^6.55 + g1*g2^3*g3^6*t^6.55 + (g2^4*g3^7*t^6.55)/g1 + g2^2*g3^8*t^6.55 - (g1*t^7.09)/g2^3 - (g2^2*t^7.09)/g3^4 - (g1*t^7.09)/g3^3 - (g2*t^7.09)/(g1*g3^2) - (2*t^7.09)/(g2*g3) - (g3*t^7.09)/(g1*g2^2) - (g3^2*t^7.09)/g2^4 + g1^2*g2^6*t^7.64 + (g2^9*t^7.64)/g1 + (g2^10*t^7.64)/g3^2 + (g1*g2^8*t^7.64)/g3 + 2*g2^7*g3*t^7.64 + 2*g1*g2^5*g3^2*t^7.64 + (g2^8*g3^2*t^7.64)/g1^2 + g1^2*g2^3*g3^3*t^7.64 + (2*g2^6*g3^3*t^7.64)/g1 + 4*g2^4*g3^4*t^7.64 + 2*g1*g2^2*g3^5*t^7.64 + (g2^5*g3^5*t^7.64)/g1^2 + g1^2*g3^6*t^7.64 + (2*g2^3*g3^6*t^7.64)/g1 + 2*g2*g3^7*t^7.64 + (g1*g3^8*t^7.64)/g2 + (g2^2*g3^8*t^7.64)/g1^2 + (g3^9*t^7.64)/g1 + (g3^10*t^7.64)/g2^2 + t^8.18/(g2^2*g3^2) + g2^9*g3^9*t^8.2 - g2^6*t^8.73 - g1*g2^4*g3*t^8.73 - (g2^5*g3^2*t^8.73)/g1 - 3*g2^3*g3^3*t^8.73 - g1*g2*g3^4*t^8.73 - (g2^2*g3^5*t^8.73)/g1 - g3^6*t^8.73 - t^4.09/(g2*g3*y) - (t^4.09*y)/(g2*g3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55766 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ q_1q_2$ + $ \phi_1\tilde{q}_2\tilde{q}_3$ 0.5876 0.6839 0.8592 [X:[], M:[1.274], q:[0.8185, 1.1815, 0.4555], qb:[0.4555, 0.8185, 0.8185], phi:[0.363]] t^2.73 + 8*t^3.82 + t^4.91 + t^5.47 - 9*t^6. - t^4.09/y - t^4.09*y detail


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
39 SU2adj1nf2 $\phi_1q_1q_2$ 0.6076 0.7195 0.8446 [X:[], M:[], q:[0.8211, 0.8211], qb:[0.4632, 0.4632], phi:[0.3578]] t^2.15 + t^2.78 + 7*t^3.85 + t^4.29 + 2*t^4.93 + t^5.56 - 2*t^6. - t^4.07/y - t^4.07*y detail