Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
50914 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.6491 0.8288 0.7832 [M:[1.1248, 0.75, 1.25, 0.8752, 0.8752, 0.7495], q:[0.75, 0.3752], qb:[0.3748, 0.5], phi:[0.5]] [M:[[1], [0], [0], [-1], [-1], [2]], q:[[0], [-1]], qb:[[1], [0]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{6}q_{1}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }q_{1}q_{2}^{2}\tilde{q}_{1}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}$, ${ }M_{6}q_{1}\tilde{q}_{2}$ ${}M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ 0 t^2.249 + t^2.25 + t^2.624 + 2*t^2.626 + t^3. + t^3.376 + t^3.749 + 2*t^3.75 + t^4.124 + t^4.126 + t^4.497 + t^4.499 + 2*t^4.5 + t^4.873 + 3*t^4.874 + 2*t^4.876 + 2*t^5.249 + 3*t^5.25 + 3*t^5.251 + t^5.624 + 2*t^5.626 + t^5.997 + 2*t^5.999 + t^6.001 + 2*t^6.373 + 3*t^6.374 + 3*t^6.376 + t^6.746 + t^6.747 + 3*t^6.749 + 3*t^6.75 + 2*t^6.751 + t^7.121 + 3*t^7.123 + 2*t^7.124 + 3*t^7.126 + 3*t^7.497 + 4*t^7.499 + 5*t^7.5 + 2*t^7.501 + 3*t^7.873 + 3*t^7.874 + 4*t^7.876 + 4*t^7.877 + t^8.246 + 2*t^8.247 + t^8.249 + t^8.25 + 2*t^8.251 + 2*t^8.621 + 3*t^8.623 + t^8.624 - 2*t^8.626 + t^8.627 + t^8.994 + t^8.996 + 4*t^8.997 + 4*t^8.999 - t^4.5/y - t^6.749/y - t^7.126/y + t^7.499/y + t^7.873/y + (4*t^7.874)/y + (2*t^7.876)/y + t^8.249/y + (3*t^8.25)/y + (2*t^8.251)/y + (2*t^8.624)/y + (3*t^8.626)/y + (3*t^8.999)/y - t^4.5*y - t^6.749*y - t^7.126*y + t^7.499*y + t^7.873*y + 4*t^7.874*y + 2*t^7.876*y + t^8.249*y + 3*t^8.25*y + 2*t^8.251*y + 2*t^8.624*y + 3*t^8.626*y + 3*t^8.999*y g1^2*t^2.249 + t^2.25 + g1*t^2.624 + (2*t^2.626)/g1 + t^3. + t^3.376/g1 + g1^2*t^3.749 + 2*t^3.75 + g1*t^4.124 + t^4.126/g1 + g1^4*t^4.497 + g1^2*t^4.499 + 2*t^4.5 + g1^3*t^4.873 + 3*g1*t^4.874 + (2*t^4.876)/g1 + 2*g1^2*t^5.249 + 3*t^5.25 + (3*t^5.251)/g1^2 + g1*t^5.624 + (2*t^5.626)/g1 + g1^4*t^5.997 + 2*g1^2*t^5.999 + t^6.001/g1^2 + 2*g1^3*t^6.373 + 3*g1*t^6.374 + (3*t^6.376)/g1 + g1^6*t^6.746 + g1^4*t^6.747 + 3*g1^2*t^6.749 + 3*t^6.75 + (2*t^6.751)/g1^2 + g1^5*t^7.121 + 3*g1^3*t^7.123 + 2*g1*t^7.124 + (3*t^7.126)/g1 + 3*g1^4*t^7.497 + 4*g1^2*t^7.499 + 5*t^7.5 + (2*t^7.501)/g1^2 + 3*g1^3*t^7.873 + 3*g1*t^7.874 + (4*t^7.876)/g1 + (4*t^7.877)/g1^3 + g1^6*t^8.246 + 2*g1^4*t^8.247 + g1^2*t^8.249 + t^8.25 + (2*t^8.251)/g1^2 + 2*g1^5*t^8.621 + 3*g1^3*t^8.623 + g1*t^8.624 - (2*t^8.626)/g1 + t^8.627/g1^3 + g1^8*t^8.994 + g1^6*t^8.996 + 4*g1^4*t^8.997 + 4*g1^2*t^8.999 - t^4.5/y - (g1^2*t^6.749)/y - t^7.126/(g1*y) + (g1^2*t^7.499)/y + (g1^3*t^7.873)/y + (4*g1*t^7.874)/y + (2*t^7.876)/(g1*y) + (g1^2*t^8.249)/y + (3*t^8.25)/y + (2*t^8.251)/(g1^2*y) + (2*g1*t^8.624)/y + (3*t^8.626)/(g1*y) + (3*g1^2*t^8.999)/y - t^4.5*y - g1^2*t^6.749*y - (t^7.126*y)/g1 + g1^2*t^7.499*y + g1^3*t^7.873*y + 4*g1*t^7.874*y + (2*t^7.876*y)/g1 + g1^2*t^8.249*y + 3*t^8.25*y + (2*t^8.251*y)/g1^2 + 2*g1*t^8.624*y + (3*t^8.626*y)/g1 + 3*g1^2*t^8.999*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48150 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{5}$ 0.6308 0.796 0.7925 [M:[1.1431, 0.75, 1.25, 0.8569, 0.8569], q:[0.75, 0.3569], qb:[0.3931, 0.5], phi:[0.5]] t^2.25 + 2*t^2.571 + t^2.679 + t^3. + t^3.321 + t^3.641 + 2*t^3.75 + t^3.859 + t^4.071 + t^4.179 + 2*t^4.5 + 2*t^4.821 + t^4.929 + 3*t^5.141 + 3*t^5.25 + t^5.359 + 2*t^5.571 + 2*t^5.891 - t^4.5/y - t^4.5*y detail