Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5073 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{5}M_{7}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6156 0.7941 0.7752 [M:[1.0046, 0.7071, 0.9954, 0.7162, 1.2838, 1.0046, 0.7162, 0.8558], q:[0.6419, 0.3536], qb:[0.3627, 0.9302], phi:[0.4279]] [M:[[14], [-22], [-14], [6], [-6], [14], [6], [-4]], q:[[-3], [-11]], qb:[[17], [5]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{6}$, ${ }M_{8}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{7}\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{8}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}$ ${}$ -3 t^2.121 + 2*t^2.149 + 2*t^2.568 + 2*t^3.014 + t^3.405 + t^3.46 + t^4.243 + 2*t^4.27 + 3*t^4.297 + 2*t^4.689 + 5*t^4.716 + 5*t^5.135 + 4*t^5.162 + t^5.526 + t^5.554 + 4*t^5.581 + 2*t^5.609 + t^5.973 - 3*t^6. + 4*t^6.027 + t^6.364 + 2*t^6.391 + 3*t^6.419 + 2*t^6.446 + 2*t^6.474 + 3*t^6.81 + 3*t^6.838 + 5*t^6.865 - t^6.892 + t^6.92 + 4*t^7.256 + 9*t^7.284 + 4*t^7.311 + t^7.648 + t^7.675 + 7*t^7.703 + 8*t^7.73 + 3*t^7.757 + t^8.094 - 3*t^8.121 + 8*t^8.176 + t^8.485 + 2*t^8.513 + 4*t^8.54 - 6*t^8.568 + 7*t^8.595 + 4*t^8.622 + 3*t^8.931 + 4*t^8.959 - t^4.284/y - t^6.405/y - t^6.432/y - (2*t^6.851)/y + (3*t^7.27)/y + (2*t^7.689)/y + (6*t^7.716)/y + (4*t^8.135)/y + (5*t^8.162)/y + t^8.554/y + (4*t^8.581)/y + (2*t^8.609)/y - t^4.284*y - t^6.405*y - t^6.432*y - 2*t^6.851*y + 3*t^7.27*y + 2*t^7.689*y + 6*t^7.716*y + 4*t^8.135*y + 5*t^8.162*y + t^8.554*y + 4*t^8.581*y + 2*t^8.609*y t^2.121/g1^22 + 2*g1^6*t^2.149 + (2*t^2.568)/g1^4 + 2*g1^14*t^3.014 + t^3.405/g1^24 + g1^32*t^3.46 + t^4.243/g1^44 + (2*t^4.27)/g1^16 + 3*g1^12*t^4.297 + (2*t^4.689)/g1^26 + 5*g1^2*t^4.716 + (5*t^5.135)/g1^8 + 4*g1^20*t^5.162 + t^5.526/g1^46 + t^5.554/g1^18 + 4*g1^10*t^5.581 + 2*g1^38*t^5.609 + t^5.973/g1^28 - 3*t^6. + 4*g1^28*t^6.027 + t^6.364/g1^66 + (2*t^6.391)/g1^38 + (3*t^6.419)/g1^10 + 2*g1^18*t^6.446 + 2*g1^46*t^6.474 + (3*t^6.81)/g1^48 + (3*t^6.838)/g1^20 + 5*g1^8*t^6.865 - g1^36*t^6.892 + g1^64*t^6.92 + (4*t^7.256)/g1^30 + (9*t^7.284)/g1^2 + 4*g1^26*t^7.311 + t^7.648/g1^68 + t^7.675/g1^40 + (7*t^7.703)/g1^12 + 8*g1^16*t^7.73 + 3*g1^44*t^7.757 + t^8.094/g1^50 - (3*t^8.121)/g1^22 + 8*g1^34*t^8.176 + t^8.485/g1^88 + (2*t^8.513)/g1^60 + (4*t^8.54)/g1^32 - (6*t^8.568)/g1^4 + 7*g1^24*t^8.595 + 4*g1^52*t^8.622 + (3*t^8.931)/g1^70 + (4*t^8.959)/g1^42 - t^4.284/(g1^2*y) - t^6.405/(g1^24*y) - (g1^4*t^6.432)/y - (2*t^6.851)/(g1^6*y) + (3*t^7.27)/(g1^16*y) + (2*t^7.689)/(g1^26*y) + (6*g1^2*t^7.716)/y + (4*t^8.135)/(g1^8*y) + (5*g1^20*t^8.162)/y + t^8.554/(g1^18*y) + (4*g1^10*t^8.581)/y + (2*g1^38*t^8.609)/y - (t^4.284*y)/g1^2 - (t^6.405*y)/g1^24 - g1^4*t^6.432*y - (2*t^6.851*y)/g1^6 + (3*t^7.27*y)/g1^16 + (2*t^7.689*y)/g1^26 + 6*g1^2*t^7.716*y + (4*t^8.135*y)/g1^8 + 5*g1^20*t^8.162*y + (t^8.554*y)/g1^18 + 4*g1^10*t^8.581*y + 2*g1^38*t^8.609*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3190 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{5}M_{7}$ 0.603 0.7726 0.7805 [M:[1.0009, 0.7128, 0.9991, 0.7147, 1.2853, 1.0009, 0.7147], q:[0.6427, 0.3564], qb:[0.3583, 0.9289], phi:[0.4284]] t^2.139 + 2*t^2.144 + t^2.571 + 2*t^3.003 + t^3.424 + t^3.429 + t^3.435 + t^4.277 + 2*t^4.283 + 3*t^4.288 + t^4.709 + 3*t^4.715 + 3*t^5.141 + 4*t^5.147 + t^5.562 + 2*t^5.568 + 4*t^5.573 + 2*t^5.579 - 2*t^6. - t^4.285/y - t^4.285*y detail