Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5072 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1M_3$ + $ M_3M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_5M_7$ + $ M_8\phi_1q_2^2$ | 0.6167 | 0.7979 | 0.7729 | [X:[], M:[0.9814, 0.7436, 1.0186, 0.7063, 1.2937, 0.9814, 0.7063, 0.8252], q:[0.6468, 0.3718], qb:[0.3345, 0.9219], phi:[0.4312]] | [X:[], M:[[14], [-22], [-14], [6], [-6], [14], [6], [24]], q:[[-3], [-11]], qb:[[17], [5]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ M_7$, $ M_2$, $ M_8$, $ \phi_1^2$, $ M_1$, $ M_6$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_7$, $ M_7^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_4$, $ M_2M_7$, $ \phi_1q_1q_2$, $ M_2^2$, $ M_4M_8$, $ M_7M_8$, $ M_2M_8$, $ M_4\phi_1^2$, $ M_7\phi_1^2$, $ q_1\tilde{q}_2$, $ M_2\phi_1^2$, $ M_8^2$, $ M_1M_4$, $ M_4M_6$, $ M_1M_7$, $ M_6M_7$, $ M_8\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_2$, $ M_2M_6$, $ \phi_1^4$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_8$, $ M_6M_8$, $ M_4\phi_1\tilde{q}_1^2$, $ M_7\phi_1\tilde{q}_1^2$, $ M_1\phi_1^2$, $ M_6\phi_1^2$, $ M_4\phi_1q_2\tilde{q}_1$, $ M_7\phi_1q_2\tilde{q}_1$, $ M_8\phi_1\tilde{q}_1^2$, $ M_1^2$, $ M_1M_6$, $ M_6^2$, $ M_8\phi_1q_2\tilde{q}_1$, $ \phi_1^3\tilde{q}_1^2$ | $\phi_1^3q_2\tilde{q}_1$ | -2 | 2*t^2.12 + t^2.23 + t^2.48 + t^2.59 + 2*t^2.94 + t^3.3 + t^3.41 + 3*t^4.24 + 2*t^4.35 + t^4.46 + 2*t^4.59 + 4*t^4.71 + t^4.82 + t^4.95 + 5*t^5.06 + 3*t^5.17 + 4*t^5.42 + 4*t^5.53 + t^5.78 + 4*t^5.89 - 2*t^6. - t^6.11 + 2*t^6.24 + 4*t^6.36 + t^6.47 + 2*t^6.58 + t^6.6 + t^6.69 + 3*t^6.71 + 4*t^6.83 + 2*t^6.94 + t^7.05 + 2*t^7.07 + 8*t^7.18 + 5*t^7.29 + 2*t^7.41 + t^7.43 + 8*t^7.54 + 10*t^7.65 + t^7.76 + 4*t^7.9 + 10*t^8.01 - t^8.12 - 6*t^8.23 + t^8.25 - t^8.34 + 8*t^8.36 + 5*t^8.48 - 5*t^8.59 + 4*t^8.72 + 2*t^8.81 + 8*t^8.83 + t^8.92 - 4*t^8.94 - t^4.29/y - t^6.41/y - t^6.52/y - t^6.77/y - t^6.88/y + (3*t^7.35)/y + (2*t^7.59)/y + (4*t^7.71)/y + (2*t^7.82)/y + (6*t^8.06)/y + (3*t^8.17)/y + (4*t^8.42)/y + (4*t^8.53)/y - t^8.76/y + t^8.78/y + (2*t^8.89)/y - t^4.29*y - t^6.41*y - t^6.52*y - t^6.77*y - t^6.88*y + 3*t^7.35*y + 2*t^7.59*y + 4*t^7.71*y + 2*t^7.82*y + 6*t^8.06*y + 3*t^8.17*y + 4*t^8.42*y + 4*t^8.53*y - t^8.76*y + t^8.78*y + 2*t^8.89*y | 2*g1^6*t^2.12 + t^2.23/g1^22 + g1^24*t^2.48 + t^2.59/g1^4 + 2*g1^14*t^2.94 + g1^32*t^3.3 + g1^4*t^3.41 + 3*g1^12*t^4.24 + (2*t^4.35)/g1^16 + t^4.46/g1^44 + 2*g1^30*t^4.59 + 4*g1^2*t^4.71 + t^4.82/g1^26 + g1^48*t^4.95 + 5*g1^20*t^5.06 + (3*t^5.17)/g1^8 + 4*g1^38*t^5.42 + 4*g1^10*t^5.53 + g1^56*t^5.78 + 4*g1^28*t^5.89 - 2*t^6. - t^6.11/g1^28 + 2*g1^46*t^6.24 + 4*g1^18*t^6.36 + t^6.47/g1^10 + (2*t^6.58)/g1^38 + g1^64*t^6.6 + t^6.69/g1^66 + 3*g1^36*t^6.71 + 4*g1^8*t^6.83 + (2*t^6.94)/g1^20 + t^7.05/g1^48 + 2*g1^54*t^7.07 + 8*g1^26*t^7.18 + (5*t^7.29)/g1^2 + (2*t^7.41)/g1^30 + g1^72*t^7.43 + 8*g1^44*t^7.54 + 10*g1^16*t^7.65 + t^7.76/g1^12 + 4*g1^62*t^7.9 + 10*g1^34*t^8.01 - g1^6*t^8.12 - (6*t^8.23)/g1^22 + g1^80*t^8.25 - t^8.34/g1^50 + 8*g1^52*t^8.36 + 5*g1^24*t^8.48 - (5*t^8.59)/g1^4 + 4*g1^70*t^8.72 + (2*t^8.81)/g1^60 + 8*g1^42*t^8.83 + t^8.92/g1^88 - 4*g1^14*t^8.94 - t^4.29/(g1^2*y) - (g1^4*t^6.41)/y - t^6.52/(g1^24*y) - (g1^22*t^6.77)/y - t^6.88/(g1^6*y) + (3*t^7.35)/(g1^16*y) + (2*g1^30*t^7.59)/y + (4*g1^2*t^7.71)/y + (2*t^7.82)/(g1^26*y) + (6*g1^20*t^8.06)/y + (3*t^8.17)/(g1^8*y) + (4*g1^38*t^8.42)/y + (4*g1^10*t^8.53)/y - t^8.76/(g1^46*y) + (g1^56*t^8.78)/y + (2*g1^28*t^8.89)/y - (t^4.29*y)/g1^2 - g1^4*t^6.41*y - (t^6.52*y)/g1^24 - g1^22*t^6.77*y - (t^6.88*y)/g1^6 + (3*t^7.35*y)/g1^16 + 2*g1^30*t^7.59*y + 4*g1^2*t^7.71*y + (2*t^7.82*y)/g1^26 + 6*g1^20*t^8.06*y + (3*t^8.17*y)/g1^8 + 4*g1^38*t^8.42*y + 4*g1^10*t^8.53*y - (t^8.76*y)/g1^46 + g1^56*t^8.78*y + 2*g1^28*t^8.89*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3190 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1M_3$ + $ M_3M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_5M_7$ | 0.603 | 0.7726 | 0.7805 | [X:[], M:[1.0009, 0.7128, 0.9991, 0.7147, 1.2853, 1.0009, 0.7147], q:[0.6427, 0.3564], qb:[0.3583, 0.9289], phi:[0.4284]] | 3*t^2.14 + t^2.57 + 2*t^3. + t^3.42 + 2*t^3.43 + 3*t^4.28 + 3*t^4.29 + 4*t^4.71 + 3*t^5.14 + 4*t^5.15 + t^5.56 + 6*t^5.57 + 2*t^5.58 - 2*t^6. - t^4.29/y - t^4.29*y | detail |