Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5066 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1M_3$ + $ M_3M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_5M_8$ 0.6177 0.7989 0.7732 [X:[], M:[1.0242, 0.6763, 0.9758, 0.7246, 1.2754, 1.0242, 0.8019, 0.7246], q:[0.6377, 0.3382], qb:[0.3865, 0.9372], phi:[0.4251]] [X:[], M:[[14], [-22], [-14], [6], [-6], [14], [-32], [6]], q:[[-3], [-11]], qb:[[17], [5]], phi:[[-2]]] 1 {a: 2941/4761, c: 7607/9522, M1: 212/207, M2: 140/207, M3: 202/207, M4: 50/69, M5: 88/69, M6: 212/207, M7: 166/207, M8: 50/69, q1: 44/69, q2: 70/207, qb1: 80/207, qb2: 194/207, phi1: 88/207}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_4$, $ M_8$, $ M_7$, $ \phi_1^2$, $ M_1$, $ M_6$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ M_2^2$, $ M_2M_4$, $ M_2M_8$, $ \phi_1q_1q_2$, $ M_4^2$, $ M_4M_8$, $ M_8^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_7$, $ M_4M_7$, $ M_7M_8$, $ M_2\phi_1^2$, $ M_4\phi_1^2$, $ M_8\phi_1^2$, $ q_1\tilde{q}_2$, $ M_7^2$, $ M_7\phi_1^2$, $ M_1M_2$, $ M_2M_6$, $ \phi_1^4$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_4$, $ M_4M_6$, $ M_1M_8$, $ M_6M_8$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1q_2^2$, $ M_1M_7$, $ M_6M_7$, $ M_4\phi_1q_2^2$, $ M_8\phi_1q_2^2$, $ M_1\phi_1^2$, $ M_6\phi_1^2$, $ M_4\phi_1q_2\tilde{q}_1$, $ M_8\phi_1q_2\tilde{q}_1$, $ M_7\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_7\phi_1q_2\tilde{q}_1$ $\phi_1^3q_2\tilde{q}_1$ -2 t^2.03 + 2*t^2.17 + t^2.41 + t^2.55 + 2*t^3.07 + t^3.3 + t^3.45 + t^4.06 + 2*t^4.2 + 3*t^4.35 + t^4.43 + 3*t^4.58 + 3*t^4.72 + t^4.81 + t^4.96 + 3*t^5.1 + 4*t^5.25 + t^5.33 + 4*t^5.48 + 3*t^5.62 + t^5.71 + t^5.86 - 2*t^6. + t^6.09 + 2*t^6.14 + 2*t^6.23 + 3*t^6.38 + t^6.46 + 4*t^6.52 + 4*t^6.61 + 5*t^6.75 + t^6.84 + 2*t^6.9 + 3*t^6.99 - t^7.04 + 5*t^7.13 + t^7.22 + 4*t^7.28 + 2*t^7.36 + 4*t^7.42 + 5*t^7.51 + 7*t^7.65 + t^7.74 + 5*t^7.8 + 4*t^7.88 + 2*t^8.12 - 2*t^8.17 + 3*t^8.26 + 3*t^8.32 + t^8.41 + t^8.49 + 2*t^8.55 + 4*t^8.64 + 4*t^8.7 + 6*t^8.78 + t^8.87 + 2*t^8.93 - t^4.28/y - t^6.3/y - t^6.45/y - t^6.68/y - t^6.83/y + (3*t^7.2)/y + t^7.43/y + (3*t^7.58)/y + (3*t^7.72)/y + t^7.87/y + t^7.96/y + (3*t^8.1)/y + (5*t^8.25)/y + (4*t^8.48)/y + (3*t^8.62)/y - t^4.28*y - t^6.3*y - t^6.45*y - t^6.68*y - t^6.83*y + 3*t^7.2*y + t^7.43*y + 3*t^7.58*y + 3*t^7.72*y + t^7.87*y + t^7.96*y + 3*t^8.1*y + 5*t^8.25*y + 4*t^8.48*y + 3*t^8.62*y t^2.03/g1^22 + 2*g1^6*t^2.17 + t^2.41/g1^32 + t^2.55/g1^4 + 2*g1^14*t^3.07 + t^3.3/g1^24 + g1^4*t^3.45 + t^4.06/g1^44 + (2*t^4.2)/g1^16 + 3*g1^12*t^4.35 + t^4.43/g1^54 + (3*t^4.58)/g1^26 + 3*g1^2*t^4.72 + t^4.81/g1^64 + t^4.96/g1^36 + (3*t^5.1)/g1^8 + 4*g1^20*t^5.25 + t^5.33/g1^46 + (4*t^5.48)/g1^18 + 3*g1^10*t^5.62 + t^5.71/g1^56 + t^5.86/g1^28 - 2*t^6. + t^6.09/g1^66 + 2*g1^28*t^6.14 + (2*t^6.23)/g1^38 + (3*t^6.38)/g1^10 + t^6.46/g1^76 + 4*g1^18*t^6.52 + (4*t^6.61)/g1^48 + (5*t^6.75)/g1^20 + t^6.84/g1^86 + 2*g1^8*t^6.9 + (3*t^6.99)/g1^58 - g1^36*t^7.04 + (5*t^7.13)/g1^30 + t^7.22/g1^96 + (4*t^7.28)/g1^2 + (2*t^7.36)/g1^68 + 4*g1^26*t^7.42 + (5*t^7.51)/g1^40 + (7*t^7.65)/g1^12 + t^7.74/g1^78 + 5*g1^16*t^7.8 + (4*t^7.88)/g1^50 + (2*t^8.12)/g1^88 - 2*g1^6*t^8.17 + (3*t^8.26)/g1^60 + 3*g1^34*t^8.32 + t^8.41/g1^32 + t^8.49/g1^98 + (2*t^8.55)/g1^4 + (4*t^8.64)/g1^70 + 4*g1^24*t^8.7 + (6*t^8.78)/g1^42 + t^8.87/g1^108 + (2*t^8.93)/g1^14 - t^4.28/(g1^2*y) - t^6.3/(g1^24*y) - (g1^4*t^6.45)/y - t^6.68/(g1^34*y) - t^6.83/(g1^6*y) + (3*t^7.2)/(g1^16*y) + t^7.43/(g1^54*y) + (3*t^7.58)/(g1^26*y) + (3*g1^2*t^7.72)/y + (g1^30*t^7.87)/y + t^7.96/(g1^36*y) + (3*t^8.1)/(g1^8*y) + (5*g1^20*t^8.25)/y + (4*t^8.48)/(g1^18*y) + (3*g1^10*t^8.62)/y - (t^4.28*y)/g1^2 - (t^6.3*y)/g1^24 - g1^4*t^6.45*y - (t^6.68*y)/g1^34 - (t^6.83*y)/g1^6 + (3*t^7.2*y)/g1^16 + (t^7.43*y)/g1^54 + (3*t^7.58*y)/g1^26 + 3*g1^2*t^7.72*y + g1^30*t^7.87*y + (t^7.96*y)/g1^36 + (3*t^8.1*y)/g1^8 + 5*g1^20*t^8.25*y + (4*t^8.48*y)/g1^18 + 3*g1^10*t^8.62*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3189 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1M_3$ + $ M_3M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ 0.5978 0.762 0.7845 [X:[], M:[1.0258, 0.6737, 0.9742, 0.7254, 1.2746, 1.0258, 0.7981], q:[0.6373, 0.3369], qb:[0.3885, 0.9378], phi:[0.4249]] t^2.02 + t^2.18 + t^2.39 + t^2.55 + 2*t^3.08 + t^3.3 + t^3.45 + t^3.82 + t^4.04 + t^4.2 + t^4.35 + t^4.42 + 2*t^4.57 + 2*t^4.73 + t^4.79 + t^4.94 + 3*t^5.1 + 2*t^5.25 + t^5.32 + 3*t^5.47 + 2*t^5.63 + t^5.69 + 2*t^5.85 - t^6. - t^4.27/y - t^4.27*y detail