Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5061 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{7}$ + ${ }M_{8}\phi_{1}^{2}$ | 0.6485 | 0.8038 | 0.8068 | [M:[1.0707, 0.8148, 1.0572, 0.8283, 1.1717, 0.6869, 1.1852, 1.0572], q:[0.5219, 0.4074], qb:[0.4209, 0.7643], phi:[0.4714]] | [M:[[-30], [22], [4], [-12], [12], [48], [-22], [4]], q:[[19], [11]], qb:[[-23], [1]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{8}$, ${ }M_{1}$, ${ }M_{5}$, ${ }M_{7}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{8}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$ | ${}$ | -2 | t^2.061 + t^2.485 + 2*t^3.172 + t^3.212 + t^3.515 + t^3.556 + 2*t^3.859 + t^3.899 + t^4.121 + t^4.202 + t^4.242 + 2*t^4.546 + t^4.97 + 2*t^5.232 + t^5.273 + t^5.576 + t^5.616 + t^5.657 + 2*t^5.919 - 2*t^6. + t^6.182 + t^6.263 + 2*t^6.343 + 2*t^6.384 + t^6.424 + 2*t^6.606 + t^6.687 + 2*t^6.727 + t^6.768 + 4*t^7.03 + 2*t^7.071 + 2*t^7.293 + t^7.333 + 2*t^7.374 + 2*t^7.414 + t^7.454 + t^7.637 + t^7.677 + 4*t^7.717 + 2*t^7.758 + 2*t^7.98 + t^8.101 + t^8.243 + t^8.323 + 4*t^8.404 + t^8.444 - t^8.485 + 2*t^8.667 + 2*t^8.748 + 2*t^8.788 + t^8.828 - t^4.414/y - t^6.475/y + t^7.202/y + t^7.242/y + t^7.546/y - t^7.586/y - t^7.626/y + (2*t^8.232)/y + t^8.273/y + t^8.353/y - t^8.535/y + t^8.576/y + t^8.616/y + (2*t^8.657)/y + t^8.697/y + (2*t^8.919)/y + t^8.96/y - t^4.414*y - t^6.475*y + t^7.202*y + t^7.242*y + t^7.546*y - t^7.586*y - t^7.626*y + 2*t^8.232*y + t^8.273*y + t^8.353*y - t^8.535*y + t^8.576*y + t^8.616*y + 2*t^8.657*y + t^8.697*y + 2*t^8.919*y + t^8.96*y | g1^48*t^2.061 + t^2.485/g1^12 + 2*g1^4*t^3.172 + t^3.212/g1^30 + g1^12*t^3.515 + t^3.556/g1^22 + 2*g1^20*t^3.859 + t^3.899/g1^14 + g1^96*t^4.121 + g1^28*t^4.202 + t^4.242/g1^6 + 2*g1^36*t^4.546 + t^4.97/g1^24 + 2*g1^52*t^5.232 + g1^18*t^5.273 + g1^60*t^5.576 + g1^26*t^5.616 + t^5.657/g1^8 + 2*g1^68*t^5.919 - 2*t^6. + g1^144*t^6.182 + g1^76*t^6.263 + 2*g1^8*t^6.343 + (2*t^6.384)/g1^26 + t^6.424/g1^60 + 2*g1^84*t^6.606 + g1^16*t^6.687 + (2*t^6.727)/g1^18 + t^6.768/g1^52 + 4*g1^24*t^7.03 + (2*t^7.071)/g1^10 + 2*g1^100*t^7.293 + g1^66*t^7.333 + 2*g1^32*t^7.374 + (2*t^7.414)/g1^2 + t^7.454/g1^36 + g1^108*t^7.637 + g1^74*t^7.677 + 4*g1^40*t^7.717 + 2*g1^6*t^7.758 + 2*g1^116*t^7.98 + g1^14*t^8.101 + g1^192*t^8.243 + g1^124*t^8.323 + 4*g1^56*t^8.404 + g1^22*t^8.444 - t^8.485/g1^12 + 2*g1^132*t^8.667 + 2*g1^64*t^8.748 + 2*g1^30*t^8.788 + t^8.828/g1^4 - t^4.414/(g1^2*y) - (g1^46*t^6.475)/y + (g1^28*t^7.202)/y + t^7.242/(g1^6*y) + (g1^36*t^7.546)/y - (g1^2*t^7.586)/y - t^7.626/(g1^32*y) + (2*g1^52*t^8.232)/y + (g1^18*t^8.273)/y + t^8.353/(g1^50*y) - (g1^94*t^8.535)/y + (g1^60*t^8.576)/y + (g1^26*t^8.616)/y + (2*t^8.657)/(g1^8*y) + t^8.697/(g1^42*y) + (2*g1^68*t^8.919)/y + (g1^34*t^8.96)/y - (t^4.414*y)/g1^2 - g1^46*t^6.475*y + g1^28*t^7.202*y + (t^7.242*y)/g1^6 + g1^36*t^7.546*y - g1^2*t^7.586*y - (t^7.626*y)/g1^32 + 2*g1^52*t^8.232*y + g1^18*t^8.273*y + (t^8.353*y)/g1^50 - g1^94*t^8.535*y + g1^60*t^8.576*y + g1^26*t^8.616*y + (2*t^8.657*y)/g1^8 + (t^8.697*y)/g1^42 + 2*g1^68*t^8.919*y + g1^34*t^8.96*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3178 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{7}$ | 0.6538 | 0.8125 | 0.8047 | [M:[1.067, 0.8175, 1.0577, 0.8268, 1.1732, 0.6928, 1.1825], q:[0.5242, 0.4088], qb:[0.418, 0.7644], phi:[0.4711]] | t^2.078 + t^2.48 + t^2.827 + t^3.173 + t^3.201 + t^3.52 + t^3.547 + 2*t^3.866 + t^3.894 + t^4.157 + t^4.212 + t^4.24 + 2*t^4.559 + t^4.905 + t^4.961 + t^5.252 + t^5.279 + t^5.307 + t^5.598 + t^5.626 + t^5.654 + 2*t^5.944 - t^6. - t^4.413/y - t^4.413*y | detail |