Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5051 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_3^2$ + $ M_5M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ + $ M_8\phi_1q_2^2$ 0.6342 0.8217 0.7718 [X:[], M:[0.9286, 0.7857, 1.0, 0.7143, 1.2857, 0.7143, 0.9286, 0.7857], q:[0.6786, 0.3929], qb:[0.3214, 0.8929], phi:[0.4286]] [X:[], M:[[2], [-2], [0], [0], [0], [0], [-2], [2]], q:[[-1], [-1]], qb:[[1], [1]], phi:[[0]]] 1 {a: 1989/3136, c: 2577/3136, M1: 13/14, M2: 11/14, M3: 1, M4: 5/7, M5: 9/7, M6: 5/7, M7: 13/14, M8: 11/14, q1: 19/28, q2: 11/28, qb1: 9/28, qb2: 25/28, phi1: 3/7}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_6$, $ M_2$, $ M_8$, $ \phi_1^2$, $ M_7$, $ M_1$, $ M_3$, $ \phi_1q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_4$, $ M_2M_6$, $ \phi_1q_1q_2$, $ M_4M_8$, $ M_6M_8$, $ M_2^2$, $ M_2M_8$, $ M_8^2$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_8^2$, $ M_4M_7$, $ M_6M_7$, $ M_2\phi_1^2$, $ M_1M_4$, $ M_1M_6$, $ M_8\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_2$, $ M_3M_4$, $ M_3M_6$, $ M_2M_7$, $ M_1M_8$, $ M_7M_8$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_7$, $ M_1M_8$, $ M_2M_3$, $ M_7\phi_1^2$, $ \phi_1q_1^2$, $ M_3M_8$, $ M_1\phi_1^2$, $ M_1^2$, $ M_1M_7$, $ M_7^2$, $ M_3\phi_1^2$, $ M_4\phi_1q_2\tilde{q}_1$, $ M_6\phi_1q_2\tilde{q}_1$, $ M_7^2$, $ M_1^2$, $ M_3M_7$, $ M_1M_3$, $ M_8\phi_1q_2\tilde{q}_1$ $\phi_1^3q_2\tilde{q}_1$ -1 2*t^2.14 + 2*t^2.36 + t^2.57 + 2*t^2.79 + t^3. + t^3.43 + 3*t^4.29 + 4*t^4.5 + 6*t^4.71 + 6*t^4.93 + 7*t^5.14 + 4*t^5.36 + 5*t^5.57 + 2*t^5.79 - t^6. + 3*t^6.43 + 4*t^6.64 + 8*t^6.86 + 12*t^7.07 + 14*t^7.29 + 16*t^7.5 + 16*t^7.71 + 10*t^7.93 + 3*t^8.14 - 2*t^8.36 - 4*t^8.79 - t^4.29/y - t^6.43/y - (2*t^6.64)/y - t^6.86/y - (2*t^7.07)/y + t^7.29/y + (6*t^7.5)/y + (4*t^7.71)/y + (8*t^7.93)/y + (7*t^8.14)/y + (4*t^8.36)/y + (3*t^8.57)/y + (2*t^8.79)/y - t^4.29*y - t^6.43*y - 2*t^6.64*y - t^6.86*y - 2*t^7.07*y + t^7.29*y + 6*t^7.5*y + 4*t^7.71*y + 8*t^7.93*y + 7*t^8.14*y + 4*t^8.36*y + 3*t^8.57*y + 2*t^8.79*y 2*t^2.14 + t^2.36/g1^2 + g1^2*t^2.36 + t^2.57 + t^2.79/g1^2 + g1^2*t^2.79 + t^3. + t^3.43 + 3*t^4.29 + (2*t^4.5)/g1^2 + 2*g1^2*t^4.5 + 4*t^4.71 + t^4.71/g1^4 + g1^4*t^4.71 + (3*t^4.93)/g1^2 + 3*g1^2*t^4.93 + 5*t^5.14 + t^5.14/g1^4 + g1^4*t^5.14 + (2*t^5.36)/g1^2 + 2*g1^2*t^5.36 + 3*t^5.57 + t^5.57/g1^4 + g1^4*t^5.57 + t^5.79/g1^2 + g1^2*t^5.79 - t^6. + 3*t^6.43 + (2*t^6.64)/g1^2 + 2*g1^2*t^6.64 + 4*t^6.86 + (2*t^6.86)/g1^4 + 2*g1^4*t^6.86 + t^7.07/g1^6 + (5*t^7.07)/g1^2 + 5*g1^2*t^7.07 + g1^6*t^7.07 + 8*t^7.29 + (3*t^7.29)/g1^4 + 3*g1^4*t^7.29 + t^7.5/g1^6 + (7*t^7.5)/g1^2 + 7*g1^2*t^7.5 + g1^6*t^7.5 + 8*t^7.71 + (4*t^7.71)/g1^4 + 4*g1^4*t^7.71 + t^7.93/g1^6 + (4*t^7.93)/g1^2 + 4*g1^2*t^7.93 + g1^6*t^7.93 - t^8.14 + (2*t^8.14)/g1^4 + 2*g1^4*t^8.14 + t^8.36/g1^6 - (2*t^8.36)/g1^2 - 2*g1^2*t^8.36 + g1^6*t^8.36 - (2*t^8.79)/g1^2 - 2*g1^2*t^8.79 - t^4.29/y - t^6.43/y - t^6.64/(g1^2*y) - (g1^2*t^6.64)/y - t^6.86/y - t^7.07/(g1^2*y) - (g1^2*t^7.07)/y + t^7.29/y + (3*t^7.5)/(g1^2*y) + (3*g1^2*t^7.5)/y + (4*t^7.71)/y + (4*t^7.93)/(g1^2*y) + (4*g1^2*t^7.93)/y + (5*t^8.14)/y + t^8.14/(g1^4*y) + (g1^4*t^8.14)/y + (2*t^8.36)/(g1^2*y) + (2*g1^2*t^8.36)/y + (3*t^8.57)/y + t^8.79/(g1^2*y) + (g1^2*t^8.79)/y - t^4.29*y - t^6.43*y - (t^6.64*y)/g1^2 - g1^2*t^6.64*y - t^6.86*y - (t^7.07*y)/g1^2 - g1^2*t^7.07*y + t^7.29*y + (3*t^7.5*y)/g1^2 + 3*g1^2*t^7.5*y + 4*t^7.71*y + (4*t^7.93*y)/g1^2 + 4*g1^2*t^7.93*y + 5*t^8.14*y + (t^8.14*y)/g1^4 + g1^4*t^8.14*y + (2*t^8.36*y)/g1^2 + 2*g1^2*t^8.36*y + 3*t^8.57*y + (t^8.79*y)/g1^2 + g1^2*t^8.79*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3172 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_3^2$ + $ M_5M_6$ + $ \phi_1q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ 0.6177 0.7934 0.7785 [X:[], M:[0.9551, 0.7592, 1.0, 0.7143, 1.2857, 0.7143, 0.902], q:[0.6653, 0.3796], qb:[0.3347, 0.9061], phi:[0.4286]] 2*t^2.14 + t^2.28 + t^2.57 + t^2.71 + t^2.87 + t^3. + t^3.43 + t^3.56 + 3*t^4.29 + 2*t^4.42 + t^4.55 + 3*t^4.71 + 3*t^4.85 + t^4.98 + 2*t^5.01 + 4*t^5.14 + 2*t^5.28 + t^5.41 + t^5.44 + 3*t^5.57 + 3*t^5.71 + t^5.73 + t^5.84 - t^6. - t^4.29/y - t^4.29*y detail