Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
502 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ 0.7722 0.9495 0.8132 [X:[], M:[0.7745, 1.2255, 0.7745, 0.7745, 0.7745, 0.7745], q:[0.6127, 0.6127], qb:[0.6127, 0.6127], phi:[0.3873]] [X:[], M:[[0, -2, -2], [0, 2, 2], [1, -4, -2], [-1, 0, -2], [-1, -2, 0], [1, -2, -4]], q:[[-1, 2, 2], [1, 0, 0]], qb:[[0, 2, 0], [0, 0, 2]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_6$, $ M_4$, $ M_3$, $ M_1$, $ M_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_6^2$, $ M_3M_6$, $ M_1M_6$, $ M_4M_6$, $ M_4^2$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ M_3M_4$, $ M_5M_6$, $ M_1M_4$, $ M_3M_5$, $ M_1M_5$, $ M_4M_5$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$ $M_1M_2$, $ M_2M_3$, $ M_2M_4$, $ M_2M_5$, $ M_2M_6$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$ -6 5*t^2.32 + 2*t^3.68 + 15*t^4.65 + 10*t^4.84 - 6*t^6. + 35*t^6.97 + 35*t^7.16 + 2*t^7.35 - 40*t^8.32 - 5*t^8.51 - t^4.16/y - (5*t^6.49)/y + (10*t^7.65)/y + (5*t^7.84)/y - (15*t^8.81)/y - t^4.16*y - 5*t^6.49*y + 10*t^7.65*y + 5*t^7.84*y - 15*t^8.81*y t^2.32/(g1*g2^2) + (g1*t^2.32)/(g2^2*g3^4) + t^2.32/(g1*g3^2) + (g1*t^2.32)/(g2^4*g3^2) + t^2.32/(g2^2*g3^2) + 2*g2^2*g3^2*t^3.68 + t^4.65/(g1^2*g2^4) + (g1^2*t^4.65)/(g2^4*g3^8) + (g1^2*t^4.65)/(g2^6*g3^6) + (g1*t^4.65)/(g2^4*g3^6) + t^4.65/(g2^2*g3^6) + t^4.65/(g1^2*g3^4) + (g1^2*t^4.65)/(g2^8*g3^4) + (g1*t^4.65)/(g2^6*g3^4) + (3*t^4.65)/(g2^4*g3^4) + t^4.65/(g1*g2^2*g3^4) + t^4.65/(g2^6*g3^2) + t^4.65/(g1*g2^4*g3^2) + t^4.65/(g1^2*g2^2*g3^2) + (g1^2*t^4.84)/(g2*g3) + (g1*g2*t^4.84)/g3 + (g2^3*t^4.84)/g3 + (g1*g3*t^4.84)/g2 + 2*g2*g3*t^4.84 + (g2^3*g3*t^4.84)/g1 + (g3^3*t^4.84)/g2 + (g2*g3^3*t^4.84)/g1 + (g2^3*g3^3*t^4.84)/g1^2 - 2*t^6. - (g1^2*t^6.)/(g2^2*g3^2) - (g2^2*t^6.)/g3^2 - (g3^2*t^6.)/g2^2 - (g2^2*g3^2*t^6.)/g1^2 + t^6.97/(g1^3*g2^6) + (g1^3*t^6.97)/(g2^6*g3^12) + (g1^3*t^6.97)/(g2^8*g3^10) + (g1^2*t^6.97)/(g2^6*g3^10) + (g1*t^6.97)/(g2^4*g3^10) + (g1^3*t^6.97)/(g2^10*g3^8) + (g1^2*t^6.97)/(g2^8*g3^8) + (3*g1*t^6.97)/(g2^6*g3^8) + t^6.97/(g2^4*g3^8) + t^6.97/(g1*g2^2*g3^8) + t^6.97/(g1^3*g3^6) + (g1^3*t^6.97)/(g2^12*g3^6) + (g1^2*t^6.97)/(g2^10*g3^6) + (3*g1*t^6.97)/(g2^8*g3^6) + (3*t^6.97)/(g2^6*g3^6) + (3*t^6.97)/(g1*g2^4*g3^6) + t^6.97/(g1^2*g2^2*g3^6) + (g1*t^6.97)/(g2^10*g3^4) + t^6.97/(g2^8*g3^4) + (3*t^6.97)/(g1*g2^6*g3^4) + t^6.97/(g1^2*g2^4*g3^4) + t^6.97/(g1^3*g2^2*g3^4) + t^6.97/(g1*g2^8*g3^2) + t^6.97/(g1^2*g2^6*g3^2) + t^6.97/(g1^3*g2^4*g3^2) + (g1^3*t^7.16)/(g2^3*g3^5) + (g1^2*t^7.16)/(g2*g3^5) + (g1*g2*t^7.16)/g3^5 + (g1^3*t^7.16)/(g2^5*g3^3) + (2*g1^2*t^7.16)/(g2^3*g3^3) + (3*g1*t^7.16)/(g2*g3^3) + (2*g2*t^7.16)/g3^3 + (g2^3*t^7.16)/(g1*g3^3) + (g1^2*t^7.16)/(g2^5*g3) + (3*g1*t^7.16)/(g2^3*g3) + (3*t^7.16)/(g2*g3) + (3*g2*t^7.16)/(g1*g3) + (g2^3*t^7.16)/(g1^2*g3) + (g1*g3*t^7.16)/g2^5 + (2*g3*t^7.16)/g2^3 + (3*g3*t^7.16)/(g1*g2) + (2*g2*g3*t^7.16)/g1^2 + (g2^3*g3*t^7.16)/g1^3 + (g3^3*t^7.16)/(g1*g2^3) + (g3^3*t^7.16)/(g1^2*g2) + (g2*g3^3*t^7.16)/g1^3 + 2*g2^4*g3^4*t^7.35 - (2*t^8.32)/g1^2 - (g1*t^8.32)/g2^6 - (2*t^8.32)/g2^4 - (5*t^8.32)/(g1*g2^2) - (g2^2*t^8.32)/g1^3 - (g1*t^8.32)/g3^6 - (g1^3*t^8.32)/(g2^4*g3^6) - (2*t^8.32)/g3^4 - (g1^3*t^8.32)/(g2^6*g3^4) - (2*g1^2*t^8.32)/(g2^4*g3^4) - (5*g1*t^8.32)/(g2^2*g3^4) - (g2^2*t^8.32)/(g1*g3^4) - (5*t^8.32)/(g1*g3^2) - (5*g1*t^8.32)/(g2^4*g3^2) - (4*t^8.32)/(g2^2*g3^2) - (g3^2*t^8.32)/g1^3 - (g3^2*t^8.32)/(g1*g2^4) - g1*g2^3*g3*t^8.51 - g1*g2*g3^3*t^8.51 - g2^3*g3^3*t^8.51 - (g2^5*g3^3*t^8.51)/g1 - (g2^3*g3^5*t^8.51)/g1 - t^4.16/(g2*g3*y) - (g1*t^6.49)/(g2^3*g3^5*y) - (g1*t^6.49)/(g2^5*g3^3*y) - t^6.49/(g2^3*g3^3*y) - t^6.49/(g1*g2*g3^3*y) - t^6.49/(g1*g2^3*g3*y) + (g1^2*t^7.65)/(g2^6*g3^6*y) + (g1*t^7.65)/(g2^4*g3^6*y) + t^7.65/(g2^2*g3^6*y) + (g1*t^7.65)/(g2^6*g3^4*y) + (2*t^7.65)/(g2^4*g3^4*y) + t^7.65/(g1*g2^2*g3^4*y) + t^7.65/(g2^6*g3^2*y) + t^7.65/(g1*g2^4*g3^2*y) + t^7.65/(g1^2*g2^2*g3^2*y) + (g1*g2*t^7.84)/(g3*y) + (g1*g3*t^7.84)/(g2*y) + (g2*g3*t^7.84)/y + (g2^3*g3*t^7.84)/(g1*y) + (g2*g3^3*t^7.84)/(g1*y) - (g1^2*t^8.81)/(g2^5*g3^9*y) - (g1^2*t^8.81)/(g2^7*g3^7*y) - (g1*t^8.81)/(g2^5*g3^7*y) - t^8.81/(g2^3*g3^7*y) - (g1^2*t^8.81)/(g2^9*g3^5*y) - (g1*t^8.81)/(g2^7*g3^5*y) - (3*t^8.81)/(g2^5*g3^5*y) - t^8.81/(g1*g2^3*g3^5*y) - t^8.81/(g1^2*g2*g3^5*y) - t^8.81/(g2^7*g3^3*y) - t^8.81/(g1*g2^5*g3^3*y) - t^8.81/(g1^2*g2^3*g3^3*y) - t^8.81/(g1^2*g2^5*g3*y) - (t^4.16*y)/(g2*g3) - (g1*t^6.49*y)/(g2^3*g3^5) - (g1*t^6.49*y)/(g2^5*g3^3) - (t^6.49*y)/(g2^3*g3^3) - (t^6.49*y)/(g1*g2*g3^3) - (t^6.49*y)/(g1*g2^3*g3) + (g1^2*t^7.65*y)/(g2^6*g3^6) + (g1*t^7.65*y)/(g2^4*g3^6) + (t^7.65*y)/(g2^2*g3^6) + (g1*t^7.65*y)/(g2^6*g3^4) + (2*t^7.65*y)/(g2^4*g3^4) + (t^7.65*y)/(g1*g2^2*g3^4) + (t^7.65*y)/(g2^6*g3^2) + (t^7.65*y)/(g1*g2^4*g3^2) + (t^7.65*y)/(g1^2*g2^2*g3^2) + (g1*g2*t^7.84*y)/g3 + (g1*g3*t^7.84*y)/g2 + g2*g3*t^7.84*y + (g2^3*g3*t^7.84*y)/g1 + (g2*g3^3*t^7.84*y)/g1 - (g1^2*t^8.81*y)/(g2^5*g3^9) - (g1^2*t^8.81*y)/(g2^7*g3^7) - (g1*t^8.81*y)/(g2^5*g3^7) - (t^8.81*y)/(g2^3*g3^7) - (g1^2*t^8.81*y)/(g2^9*g3^5) - (g1*t^8.81*y)/(g2^7*g3^5) - (3*t^8.81*y)/(g2^5*g3^5) - (t^8.81*y)/(g1*g2^3*g3^5) - (t^8.81*y)/(g1^2*g2*g3^5) - (t^8.81*y)/(g2^7*g3^3) - (t^8.81*y)/(g1*g2^5*g3^3) - (t^8.81*y)/(g1^2*g2^3*g3^3) - (t^8.81*y)/(g1^2*g2^5*g3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
788 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_3^2$ 0.7407 0.9101 0.8139 [X:[], M:[0.8597, 1.1403, 1.0, 0.7195, 0.8597, 0.8597], q:[0.5, 0.6403], qb:[0.5, 0.6403], phi:[0.4299]] t^2.16 + 3*t^2.58 + t^3. + 2*t^3.42 + 3*t^4.29 + t^4.32 + 4*t^4.71 + 3*t^4.74 + 3*t^5.13 + 7*t^5.16 + t^5.58 - t^6. - t^4.29/y - t^4.29*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
320 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ 0.7556 0.9204 0.821 [X:[], M:[0.7942, 1.2058, 0.7942, 0.7942, 0.7604], q:[0.586, 0.6198], qb:[0.6198, 0.586], phi:[0.3971]] t^2.28 + 3*t^2.38 + t^3.52 + 2*t^3.62 + t^4.56 + 3*t^4.66 + 3*t^4.71 + 6*t^4.77 + 4*t^4.81 + 3*t^4.91 + t^5.8 + t^5.9 - 2*t^6. - t^4.19/y - t^4.19*y detail