Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5005 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ + $ M_9\phi_1q_2^2$ 0.6739 0.8987 0.7499 [X:[], M:[0.9616, 1.1153, 1.0384, 0.8847, 0.7404, 0.7404, 0.8173, 0.8173, 0.8847], q:[0.7404, 0.2981], qb:[0.4423, 0.4423], phi:[0.5192]] [X:[], M:[[4, 4], [-12, -12], [-4, -4], [12, 12], [-5, 7], [7, -5], [-13, -1], [-1, -13], [12, 12]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ q_2\tilde{q}_1$, $ M_5$, $ q_2\tilde{q}_2$, $ M_8$, $ M_7$, $ M_4$, $ M_9$, $ M_3$, $ \phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_5M_6$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_6M_8$, $ M_8q_2\tilde{q}_1$, $ M_6M_7$, $ M_5M_8$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_2$, $ M_5M_7$, $ M_7q_2\tilde{q}_2$, $ M_4M_6$, $ M_6M_9$, $ M_4q_2\tilde{q}_1$, $ M_9q_2\tilde{q}_1$, $ M_4M_5$, $ M_5M_9$, $ M_4q_2\tilde{q}_2$, $ M_9q_2\tilde{q}_2$, $ M_8^2$, $ M_7M_8$, $ M_7^2$, $ M_4M_8$, $ M_8M_9$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_7$, $ M_7M_9$, $ \phi_1q_1\tilde{q}_2$, $ M_4^2$, $ M_4M_9$, $ M_9^2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_8$, $ M_8\phi_1^2$, $ M_3M_7$, $ M_7\phi_1^2$, $ M_3M_4$, $ M_3M_9$, $ M_4\phi_1^2$, $ M_9\phi_1^2$ . -6 4*t^2.22 + 2*t^2.45 + 2*t^2.65 + 2*t^3.12 + 3*t^4.21 + 10*t^4.44 + 8*t^4.67 + 8*t^4.88 + 3*t^4.9 + 4*t^5.11 + 3*t^5.31 + 8*t^5.34 + 2*t^5.57 + 3*t^5.77 - 6*t^6. + t^6.23 + 8*t^6.43 + 22*t^6.66 + 6*t^6.87 + 16*t^6.89 + 17*t^7.1 + 10*t^7.12 + 17*t^7.33 + 4*t^7.36 + 12*t^7.53 + 18*t^7.56 + 4*t^7.76 + 8*t^7.79 + 4*t^7.96 + 6*t^7.99 + 2*t^8.02 - 22*t^8.22 + 9*t^8.42 - 8*t^8.45 + 2*t^8.65 - 2*t^8.68 + 36*t^8.88 - t^4.56/y - (2*t^6.78)/y - (2*t^7.01)/y - t^7.21/y + (7*t^7.44)/y + (7*t^7.67)/y + (8*t^7.88)/y + (2*t^7.9)/y + (6*t^8.11)/y + t^8.31/y + (10*t^8.34)/y + (4*t^8.57)/y + (4*t^8.77)/y - t^4.56*y - 2*t^6.78*y - 2*t^7.01*y - t^7.21*y + 7*t^7.44*y + 7*t^7.67*y + 8*t^7.88*y + 2*t^7.9*y + 6*t^8.11*y + t^8.31*y + 10*t^8.34*y + 4*t^8.57*y + 4*t^8.77*y (2*g1^7*t^2.22)/g2^5 + (2*g2^7*t^2.22)/g1^5 + t^2.45/(g1*g2^13) + t^2.45/(g1^13*g2) + 2*g1^12*g2^12*t^2.65 + (2*t^3.12)/(g1^4*g2^4) + (g1^22*t^4.21)/g2^2 + g1^10*g2^10*t^4.21 + (g2^22*t^4.21)/g1^2 + (3*g1^14*t^4.44)/g2^10 + 4*g1^2*g2^2*t^4.44 + (3*g2^14*t^4.44)/g1^10 + (2*g1^6*t^4.67)/g2^18 + (4*t^4.67)/(g1^6*g2^6) + (2*g2^6*t^4.67)/g1^18 + 4*g1^19*g2^7*t^4.88 + 4*g1^7*g2^19*t^4.88 + t^4.9/(g1^2*g2^26) + t^4.9/(g1^14*g2^14) + t^4.9/(g1^26*g2^2) + (2*g1^11*t^5.11)/g2 + (2*g2^11*t^5.11)/g1 + 3*g1^24*g2^24*t^5.31 + (4*g1^3*t^5.34)/g2^9 + (4*g2^3*t^5.34)/g1^9 + t^5.57/(g1^5*g2^17) + t^5.57/(g1^17*g2^5) + 3*g1^8*g2^8*t^5.77 - 4*t^6. - (g1^12*t^6.)/g2^12 - (g2^12*t^6.)/g1^12 + t^6.23/(g1^8*g2^8) + (2*g1^29*t^6.43)/g2^7 + 2*g1^17*g2^5*t^6.43 + 2*g1^5*g2^17*t^6.43 + (2*g2^29*t^6.43)/g1^7 + (5*g1^21*t^6.66)/g2^15 + (6*g1^9*t^6.66)/g2^3 + (6*g2^9*t^6.66)/g1^3 + (5*g2^21*t^6.66)/g1^15 + 2*g1^34*g2^10*t^6.87 + 2*g1^22*g2^22*t^6.87 + 2*g1^10*g2^34*t^6.87 + (3*g1^13*t^6.89)/g2^23 + (5*g1*t^6.89)/g2^11 + (5*g2*t^6.89)/g1^11 + (3*g2^13*t^6.89)/g1^23 + 5*g1^26*g2^2*t^7.1 + 7*g1^14*g2^14*t^7.1 + 5*g1^2*g2^26*t^7.1 + (2*g1^5*t^7.12)/g2^31 + (3*t^7.12)/(g1^7*g2^19) + (3*t^7.12)/(g1^19*g2^7) + (2*g2^5*t^7.12)/g1^31 + (5*g1^18*t^7.33)/g2^6 + 7*g1^6*g2^6*t^7.33 + (5*g2^18*t^7.33)/g1^6 + t^7.36/(g1^3*g2^39) + t^7.36/(g1^15*g2^27) + t^7.36/(g1^27*g2^15) + t^7.36/(g1^39*g2^3) + 6*g1^31*g2^19*t^7.53 + 6*g1^19*g2^31*t^7.53 + (6*g1^10*t^7.56)/g2^14 + (6*t^7.56)/(g1^2*g2^2) + (6*g2^10*t^7.56)/g1^14 + 2*g1^23*g2^11*t^7.76 + 2*g1^11*g2^23*t^7.76 + (2*g1^2*t^7.79)/g2^22 + (4*t^7.79)/(g1^10*g2^10) + (2*g2^2*t^7.79)/g1^22 + 4*g1^36*g2^36*t^7.96 + 3*g1^15*g2^3*t^7.99 + 3*g1^3*g2^15*t^7.99 + t^8.02/(g1^6*g2^30) + t^8.02/(g1^30*g2^6) - (2*g1^19*t^8.22)/g2^17 - (9*g1^7*t^8.22)/g2^5 - (9*g2^7*t^8.22)/g1^5 - (2*g2^19*t^8.22)/g1^17 + (g1^44*t^8.42)/g2^4 + g1^32*g2^8*t^8.42 + 5*g1^20*g2^20*t^8.42 + g1^8*g2^32*t^8.42 + (g2^44*t^8.42)/g1^4 - (g1^11*t^8.45)/g2^25 - (3*t^8.45)/(g1*g2^13) - (3*t^8.45)/(g1^13*g2) - (g2^11*t^8.45)/g1^25 + g1^24*t^8.65 + (3*g1^36*t^8.65)/g2^12 - 6*g1^12*g2^12*t^8.65 + g2^24*t^8.65 + (3*g2^36*t^8.65)/g1^12 - t^8.68/(g1^9*g2^21) - t^8.68/(g1^21*g2^9) + (7*g1^28*t^8.88)/g2^20 + (8*g1^16*t^8.88)/g2^8 + 6*g1^4*g2^4*t^8.88 + (8*g2^16*t^8.88)/g1^8 + (7*g2^28*t^8.88)/g1^20 - t^4.56/(g1^2*g2^2*y) - (g1^5*t^6.78)/(g2^7*y) - (g2^5*t^6.78)/(g1^7*y) - t^7.01/(g1^3*g2^15*y) - t^7.01/(g1^15*g2^3*y) - (g1^10*g2^10*t^7.21)/y + (g1^14*t^7.44)/(g2^10*y) + (5*g1^2*g2^2*t^7.44)/y + (g2^14*t^7.44)/(g1^10*y) + (2*g1^6*t^7.67)/(g2^18*y) + (3*t^7.67)/(g1^6*g2^6*y) + (2*g2^6*t^7.67)/(g1^18*y) + (4*g1^19*g2^7*t^7.88)/y + (4*g1^7*g2^19*t^7.88)/y + (2*t^7.9)/(g1^14*g2^14*y) + (3*g1^11*t^8.11)/(g2*y) + (3*g2^11*t^8.11)/(g1*y) + (g1^24*g2^24*t^8.31)/y + (5*g1^3*t^8.34)/(g2^9*y) + (5*g2^3*t^8.34)/(g1^9*y) + (2*t^8.57)/(g1^5*g2^17*y) + (2*t^8.57)/(g1^17*g2^5*y) + (4*g1^8*g2^8*t^8.77)/y - (t^4.56*y)/(g1^2*g2^2) - (g1^5*t^6.78*y)/g2^7 - (g2^5*t^6.78*y)/g1^7 - (t^7.01*y)/(g1^3*g2^15) - (t^7.01*y)/(g1^15*g2^3) - g1^10*g2^10*t^7.21*y + (g1^14*t^7.44*y)/g2^10 + 5*g1^2*g2^2*t^7.44*y + (g2^14*t^7.44*y)/g1^10 + (2*g1^6*t^7.67*y)/g2^18 + (3*t^7.67*y)/(g1^6*g2^6) + (2*g2^6*t^7.67*y)/g1^18 + 4*g1^19*g2^7*t^7.88*y + 4*g1^7*g2^19*t^7.88*y + (2*t^7.9*y)/(g1^14*g2^14) + (3*g1^11*t^8.11*y)/g2 + (3*g2^11*t^8.11*y)/g1 + g1^24*g2^24*t^8.31*y + (5*g1^3*t^8.34*y)/g2^9 + (5*g2^3*t^8.34*y)/g1^9 + (2*t^8.57*y)/(g1^5*g2^17) + (2*t^8.57*y)/(g1^17*g2^5) + 4*g1^8*g2^8*t^8.77*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3123 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ 0.6656 0.8837 0.7532 [X:[], M:[0.9783, 1.0651, 1.0217, 0.9349, 0.7446, 0.7446, 0.788, 0.788], q:[0.7446, 0.2771], qb:[0.4674, 0.4674], phi:[0.5109]] 4*t^2.23 + 2*t^2.36 + t^2.8 + 2*t^3.07 + t^3.2 + 3*t^4.34 + 10*t^4.47 + 8*t^4.6 + 3*t^4.73 + 4*t^5.04 + 2*t^5.17 + 8*t^5.3 + 6*t^5.43 + 2*t^5.56 + t^5.61 + t^5.87 - 5*t^6. - t^4.53/y - t^4.53*y detail