Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5001 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_3M_5$ + $ M_2\phi_1^2$ + $ M_6\phi_1^2$ + $ \phi_1q_2^2$ + $ M_7q_1\tilde{q}_2$ + $ M_8\phi_1q_1^2$ | 0.6842 | 0.8706 | 0.7859 | [X:[], M:[0.8157, 1.0614, 1.1843, 0.6928, 0.8157, 1.0614, 1.0393, 0.6928], q:[0.4189, 0.7654], qb:[0.3968, 0.5418], phi:[0.4693]] | [X:[], M:[[-12], [4], [12], [-20], [-12], [4], [-30], [-20]], q:[[11], [1]], qb:[[-23], [19]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ M_8$, $ M_1$, $ M_5$, $ M_7$, $ M_2$, $ M_6$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4^2$, $ M_4M_8$, $ M_8^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_4$, $ M_4M_5$, $ M_1M_8$, $ M_5M_8$, $ \phi_1\tilde{q}_2^2$, $ M_1^2$, $ M_1M_5$, $ M_5^2$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_7$, $ M_7M_8$, $ M_2M_4$, $ M_4M_6$, $ M_2M_8$, $ M_6M_8$, $ M_1M_7$, $ M_5M_7$, $ M_4q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_1M_2$, $ M_2M_5$, $ M_1M_6$, $ M_5M_6$, $ M_4\phi_1\tilde{q}_1^2$, $ M_8\phi_1\tilde{q}_1^2$, $ M_4\phi_1q_1\tilde{q}_1$, $ M_8\phi_1q_1\tilde{q}_1$, $ M_5q_2\tilde{q}_1$ | . | -3 | 2*t^2.08 + 2*t^2.45 + t^3.12 + 2*t^3.18 + t^3.49 + t^3.79 + t^3.85 + 3*t^4.16 + t^4.22 + t^4.29 + 4*t^4.53 + t^4.66 + 3*t^4.89 + 2*t^5.2 + 4*t^5.26 + 3*t^5.56 + 3*t^5.63 + 2*t^5.87 + 3*t^5.93 - 3*t^6. - t^6.07 + 7*t^6.24 + 5*t^6.3 + 2*t^6.37 - t^6.44 + 7*t^6.6 + 2*t^6.67 + 2*t^6.74 + t^6.91 + 8*t^6.97 - t^7.04 - t^7.11 + 4*t^7.27 + 10*t^7.34 - t^7.41 + t^7.58 + 6*t^7.64 + 6*t^7.71 - t^7.78 - t^7.84 + 3*t^7.95 + 7*t^8.01 - 2*t^8.08 - 3*t^8.15 - t^8.21 + 11*t^8.31 + 10*t^8.38 - 2*t^8.45 - 4*t^8.51 + 14*t^8.68 + 7*t^8.75 + t^8.82 - t^8.88 + t^8.95 + 2*t^8.98 - t^4.41/y - (2*t^6.49)/y - t^6.85/y + t^7.16/y + t^7.22/y + t^7.29/y + (3*t^7.53)/y - t^7.59/y + t^7.89/y + t^7.96/y + (2*t^8.2)/y + (4*t^8.26)/y + (2*t^8.33)/y + t^8.56/y + (4*t^8.63)/y + (2*t^8.87)/y + (2*t^8.93)/y - t^4.41*y - 2*t^6.49*y - t^6.85*y + t^7.16*y + t^7.22*y + t^7.29*y + 3*t^7.53*y - t^7.59*y + t^7.89*y + t^7.96*y + 2*t^8.2*y + 4*t^8.26*y + 2*t^8.33*y + t^8.56*y + 4*t^8.63*y + 2*t^8.87*y + 2*t^8.93*y | (2*t^2.08)/g1^20 + (2*t^2.45)/g1^12 + t^3.12/g1^30 + 2*g1^4*t^3.18 + t^3.49/g1^22 + t^3.79/g1^48 + t^3.85/g1^14 + (3*t^4.16)/g1^40 + t^4.22/g1^6 + g1^28*t^4.29 + (4*t^4.53)/g1^32 + g1^36*t^4.66 + (3*t^4.89)/g1^24 + (2*t^5.2)/g1^50 + (4*t^5.26)/g1^16 + (3*t^5.56)/g1^42 + (3*t^5.63)/g1^8 + (2*t^5.87)/g1^68 + (3*t^5.93)/g1^34 - 3*t^6. - g1^34*t^6.07 + (7*t^6.24)/g1^60 + (5*t^6.3)/g1^26 + 2*g1^8*t^6.37 - g1^42*t^6.44 + (7*t^6.6)/g1^52 + (2*t^6.67)/g1^18 + 2*g1^16*t^6.74 + t^6.91/g1^78 + (8*t^6.97)/g1^44 - t^7.04/g1^10 - g1^24*t^7.11 + (4*t^7.27)/g1^70 + (10*t^7.34)/g1^36 - t^7.41/g1^2 + t^7.58/g1^96 + (6*t^7.64)/g1^62 + (6*t^7.71)/g1^28 - g1^6*t^7.78 - g1^40*t^7.84 + (3*t^7.95)/g1^88 + (7*t^8.01)/g1^54 - (2*t^8.08)/g1^20 - 3*g1^14*t^8.15 - g1^48*t^8.21 + (11*t^8.31)/g1^80 + (10*t^8.38)/g1^46 - (2*t^8.45)/g1^12 - 4*g1^22*t^8.51 + (14*t^8.68)/g1^72 + (7*t^8.75)/g1^38 + t^8.82/g1^4 - g1^30*t^8.88 + g1^64*t^8.95 + (2*t^8.98)/g1^98 - t^4.41/(g1^2*y) - (2*t^6.49)/(g1^22*y) - t^6.85/(g1^14*y) + t^7.16/(g1^40*y) + t^7.22/(g1^6*y) + (g1^28*t^7.29)/y + (3*t^7.53)/(g1^32*y) - (g1^2*t^7.59)/y + t^7.89/(g1^24*y) + (g1^10*t^7.96)/y + (2*t^8.2)/(g1^50*y) + (4*t^8.26)/(g1^16*y) + (2*g1^18*t^8.33)/y + t^8.56/(g1^42*y) + (4*t^8.63)/(g1^8*y) + (2*t^8.87)/(g1^68*y) + (2*t^8.93)/(g1^34*y) - (t^4.41*y)/g1^2 - (2*t^6.49*y)/g1^22 - (t^6.85*y)/g1^14 + (t^7.16*y)/g1^40 + (t^7.22*y)/g1^6 + g1^28*t^7.29*y + (3*t^7.53*y)/g1^32 - g1^2*t^7.59*y + (t^7.89*y)/g1^24 + g1^10*t^7.96*y + (2*t^8.2*y)/g1^50 + (4*t^8.26*y)/g1^16 + 2*g1^18*t^8.33*y + (t^8.56*y)/g1^42 + (4*t^8.63*y)/g1^8 + (2*t^8.87*y)/g1^68 + (2*t^8.93*y)/g1^34 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3131 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_3M_5$ + $ M_2\phi_1^2$ + $ M_6\phi_1^2$ + $ \phi_1q_2^2$ + $ M_7q_1\tilde{q}_2$ | 0.6635 | 0.8304 | 0.7991 | [X:[], M:[0.8173, 1.0609, 1.1827, 0.6956, 0.8173, 1.0609, 1.0434], q:[0.4174, 0.7652], qb:[0.3999, 0.5392], phi:[0.4696]] | t^2.09 + 2*t^2.45 + t^3.13 + 2*t^3.18 + t^3.5 + t^3.81 + t^3.86 + t^3.91 + t^4.17 + t^4.23 + t^4.28 + 2*t^4.54 + t^4.64 + 3*t^4.9 + t^5.22 + 2*t^5.27 + 2*t^5.58 + 3*t^5.63 + t^5.89 + 2*t^5.95 - 2*t^6. - t^4.41/y - t^4.41*y | detail |