Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4980 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{7}$ + ${ }M_{8}q_{1}\tilde{q}_{1}$ | 0.659 | 0.8295 | 0.7944 | [X:[1.5449], M:[0.4551, 1.1816, 0.7725, 0.9101, 0.7725, 0.8642, 1.0899, 0.7266], q:[0.7954, 0.7495], qb:[0.478, 0.3403], phi:[0.4092]] | [X:[[12]], M:[[-12], [4], [6], [-24], [6], [-14], [24], [16]], q:[[1], [11]], qb:[[-17], [13]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{8}$, ${ }M_{3}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{7}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{8}^{2}$, ${ }M_{3}M_{8}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{6}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{7}M_{8}$, ${ }M_{8}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{5}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$ | ${}$ | -3 | t^2.18 + 2*t^2.317 + t^2.455 + t^2.593 + 2*t^3.27 + t^3.545 + t^4.096 + t^4.359 + 3*t^4.497 + 5*t^4.635 + 2*t^4.772 + 4*t^4.91 + t^5.048 + 2*t^5.449 + 3*t^5.587 + 4*t^5.725 + 3*t^5.862 - 3*t^6. + 4*t^6.539 + t^6.551 + 3*t^6.677 + t^6.688 + 6*t^6.815 + 7*t^6.952 + 5*t^7.09 + 4*t^7.228 + 2*t^7.365 + 2*t^7.503 + 2*t^7.629 - t^7.641 + 5*t^7.767 + 9*t^7.904 + 5*t^8.042 + 4*t^8.18 + t^8.191 - 6*t^8.317 - 4*t^8.455 - 5*t^8.593 + 4*t^8.719 - t^8.73 + 7*t^8.857 + 11*t^8.994 - t^4.228/y - t^6.407/y - (2*t^6.545)/y - t^6.82/y + (2*t^7.497)/y + (3*t^7.635)/y + (3*t^7.772)/y + (4*t^7.91)/y + (2*t^8.048)/y + (2*t^8.449)/y + (3*t^8.587)/y + t^8.725/y + t^8.862/y - t^4.228*y - t^6.407*y - 2*t^6.545*y - t^6.82*y + 2*t^7.497*y + 3*t^7.635*y + 3*t^7.772*y + 4*t^7.91*y + 2*t^8.048*y + 2*t^8.449*y + 3*t^8.587*y + t^8.725*y + t^8.862*y | g1^16*t^2.18 + 2*g1^6*t^2.317 + t^2.455/g1^4 + t^2.593/g1^14 + 2*g1^24*t^3.27 + g1^4*t^3.545 + t^4.096/g1^36 + g1^32*t^4.359 + 3*g1^22*t^4.497 + 5*g1^12*t^4.635 + 2*g1^2*t^4.772 + (4*t^4.91)/g1^8 + t^5.048/g1^18 + 2*g1^40*t^5.449 + 3*g1^30*t^5.587 + 4*g1^20*t^5.725 + 3*g1^10*t^5.862 - 3*t^6. + 4*g1^48*t^6.539 + t^6.551/g1^40 + 3*g1^38*t^6.677 + t^6.688/g1^50 + 6*g1^28*t^6.815 + 7*g1^18*t^6.952 + 5*g1^8*t^7.09 + (4*t^7.228)/g1^2 + (2*t^7.365)/g1^12 + (2*t^7.503)/g1^22 + 2*g1^56*t^7.629 - t^7.641/g1^32 + 5*g1^46*t^7.767 + 9*g1^36*t^7.904 + 5*g1^26*t^8.042 + 4*g1^16*t^8.18 + t^8.191/g1^72 - 6*g1^6*t^8.317 - (4*t^8.455)/g1^4 - (5*t^8.593)/g1^14 + 4*g1^64*t^8.719 - t^8.73/g1^24 + 7*g1^54*t^8.857 + 11*g1^44*t^8.994 - t^4.228/(g1^2*y) - (g1^14*t^6.407)/y - (2*g1^4*t^6.545)/y - t^6.82/(g1^16*y) + (2*g1^22*t^7.497)/y + (3*g1^12*t^7.635)/y + (3*g1^2*t^7.772)/y + (4*t^7.91)/(g1^8*y) + (2*t^8.048)/(g1^18*y) + (2*g1^40*t^8.449)/y + (3*g1^30*t^8.587)/y + (g1^20*t^8.725)/y + (g1^10*t^8.862)/y - (t^4.228*y)/g1^2 - g1^14*t^6.407*y - 2*g1^4*t^6.545*y - (t^6.82*y)/g1^16 + 2*g1^22*t^7.497*y + 3*g1^12*t^7.635*y + 3*g1^2*t^7.772*y + (4*t^7.91*y)/g1^8 + (2*t^8.048*y)/g1^18 + 2*g1^40*t^8.449*y + 3*g1^30*t^8.587*y + g1^20*t^8.725*y + g1^10*t^8.862*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3101 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{7}$ | 0.6392 | 0.7923 | 0.8068 | [X:[1.5504], M:[0.4496, 1.1835, 0.7752, 0.8991, 0.7752, 0.8578, 1.1009], q:[0.7959, 0.7546], qb:[0.4702, 0.3463], phi:[0.4083]] | 2*t^2.326 + t^2.45 + t^2.573 + 2*t^3.303 + t^3.55 + t^3.798 + t^4.046 + t^4.527 + 4*t^4.651 + t^4.775 + 4*t^4.899 + t^5.023 + 3*t^5.628 + 3*t^5.752 + 3*t^5.876 - 3*t^6. - t^4.225/y - t^4.225*y | detail |