Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4961 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{7}$ + ${ }M_{8}\phi_{1}q_{1}\tilde{q}_{2}$ 0.6482 0.8558 0.7575 [M:[1.0, 1.0313, 0.9375, 1.2578, 0.6796, 0.7422, 0.7422, 0.7109], q:[0.2422, 0.7578], qb:[0.5, 0.5625], phi:[0.4844]] [M:[[0], [4], [-8], [1], [-9], [-1], [-1], [-5]], q:[[-1], [1]], qb:[[0], [8]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{8}$, ${ }M_{6}$, ${ }M_{7}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{5}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{8}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{8}$, ${ }M_{5}\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{8}\phi_{1}q_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{1}M_{8}$, ${ }M_{6}\phi_{1}q_{1}^{2}$, ${ }M_{7}\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{2}M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{7}$, ${ }\phi_{1}q_{1}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}q_{1}^{2}$, ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}^{4}$, ${ }M_{8}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{6}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{7}\phi_{1}q_{1}\tilde{q}_{1}$ ${}$ -2 t^2.039 + t^2.133 + 2*t^2.227 + t^2.414 + t^2.812 + t^2.906 + t^3. + t^3.094 + t^3.68 + t^4.078 + t^4.172 + 3*t^4.265 + 2*t^4.359 + 5*t^4.453 + t^4.547 + 3*t^4.641 + 2*t^4.828 + t^4.851 + 2*t^4.945 + 3*t^5.039 + 4*t^5.133 + 3*t^5.227 + 3*t^5.32 + t^5.414 + t^5.508 + t^5.625 + 2*t^5.719 + 2*t^5.812 + 3*t^5.906 - 2*t^6. + t^6.094 + t^6.117 - t^6.188 + t^6.211 + 3*t^6.304 + 3*t^6.398 + 7*t^6.492 + 5*t^6.586 + 8*t^6.68 + t^6.773 + 5*t^6.867 + t^6.89 + 2*t^6.984 + 4*t^7.055 + 4*t^7.078 + 6*t^7.172 + 2*t^7.243 + 7*t^7.265 + 10*t^7.359 + 5*t^7.453 + 5*t^7.547 + 2*t^7.641 + t^7.664 + 3*t^7.735 + 3*t^7.757 + t^7.828 + 4*t^7.851 + t^7.922 + 6*t^7.945 + 2*t^8.039 + 4*t^8.133 + t^8.156 - 5*t^8.227 + t^8.25 + 3*t^8.343 - 6*t^8.414 + 4*t^8.437 + 9*t^8.531 - 2*t^8.602 + 9*t^8.625 + 13*t^8.719 + 5*t^8.812 + 8*t^8.906 + t^8.929 - t^4.453/y - t^6.492/y - t^6.586/y - t^6.68/y + t^7.172/y + t^7.265/y + (2*t^7.359)/y + (2*t^7.453)/y + t^7.547/y + (3*t^7.641)/y + t^7.851/y + (2*t^7.945)/y + (4*t^8.039)/y + (4*t^8.133)/y + (5*t^8.227)/y + (4*t^8.32)/y + (2*t^8.414)/y + t^8.508/y - t^8.531/y - t^8.625/y + t^8.812/y + (3*t^8.906)/y - t^4.453*y - t^6.492*y - t^6.586*y - t^6.68*y + t^7.172*y + t^7.265*y + 2*t^7.359*y + 2*t^7.453*y + t^7.547*y + 3*t^7.641*y + t^7.851*y + 2*t^7.945*y + 4*t^8.039*y + 4*t^8.133*y + 5*t^8.227*y + 4*t^8.32*y + 2*t^8.414*y + t^8.508*y - t^8.531*y - t^8.625*y + t^8.812*y + 3*t^8.906*y t^2.039/g1^9 + t^2.133/g1^5 + (2*t^2.227)/g1 + g1^7*t^2.414 + t^2.812/g1^8 + t^2.906/g1^4 + t^3. + g1^4*t^3.094 + t^3.68/g1^3 + t^4.078/g1^18 + t^4.172/g1^14 + (3*t^4.265)/g1^10 + (2*t^4.359)/g1^6 + (5*t^4.453)/g1^2 + g1^2*t^4.547 + 3*g1^6*t^4.641 + 2*g1^14*t^4.828 + t^4.851/g1^17 + (2*t^4.945)/g1^13 + (3*t^5.039)/g1^9 + (4*t^5.133)/g1^5 + (3*t^5.227)/g1 + 3*g1^3*t^5.32 + g1^7*t^5.414 + g1^11*t^5.508 + t^5.625/g1^16 + (2*t^5.719)/g1^12 + (2*t^5.812)/g1^8 + (3*t^5.906)/g1^4 - 2*t^6. + g1^4*t^6.094 + t^6.117/g1^27 - g1^8*t^6.188 + t^6.211/g1^23 + (3*t^6.304)/g1^19 + (3*t^6.398)/g1^15 + (7*t^6.492)/g1^11 + (5*t^6.586)/g1^7 + (8*t^6.68)/g1^3 + g1*t^6.773 + 5*g1^5*t^6.867 + t^6.89/g1^26 + (2*t^6.984)/g1^22 + 4*g1^13*t^7.055 + (4*t^7.078)/g1^18 + (6*t^7.172)/g1^14 + 2*g1^21*t^7.243 + (7*t^7.265)/g1^10 + (10*t^7.359)/g1^6 + (5*t^7.453)/g1^2 + 5*g1^2*t^7.547 + 2*g1^6*t^7.641 + t^7.664/g1^25 + 3*g1^10*t^7.735 + (3*t^7.757)/g1^21 + g1^14*t^7.828 + (4*t^7.851)/g1^17 + g1^18*t^7.922 + (6*t^7.945)/g1^13 + (2*t^8.039)/g1^9 + (4*t^8.133)/g1^5 + t^8.156/g1^36 - (5*t^8.227)/g1 + t^8.25/g1^32 + (3*t^8.343)/g1^28 - 6*g1^7*t^8.414 + (4*t^8.437)/g1^24 + (9*t^8.531)/g1^20 - 2*g1^15*t^8.602 + (9*t^8.625)/g1^16 + (13*t^8.719)/g1^12 + (5*t^8.812)/g1^8 + (8*t^8.906)/g1^4 + t^8.929/g1^35 - t^4.453/(g1^2*y) - t^6.492/(g1^11*y) - t^6.586/(g1^7*y) - t^6.68/(g1^3*y) + t^7.172/(g1^14*y) + t^7.265/(g1^10*y) + (2*t^7.359)/(g1^6*y) + (2*t^7.453)/(g1^2*y) + (g1^2*t^7.547)/y + (3*g1^6*t^7.641)/y + t^7.851/(g1^17*y) + (2*t^7.945)/(g1^13*y) + (4*t^8.039)/(g1^9*y) + (4*t^8.133)/(g1^5*y) + (5*t^8.227)/(g1*y) + (4*g1^3*t^8.32)/y + (2*g1^7*t^8.414)/y + (g1^11*t^8.508)/y - t^8.531/(g1^20*y) - t^8.625/(g1^16*y) + t^8.812/(g1^8*y) + (3*t^8.906)/(g1^4*y) - (t^4.453*y)/g1^2 - (t^6.492*y)/g1^11 - (t^6.586*y)/g1^7 - (t^6.68*y)/g1^3 + (t^7.172*y)/g1^14 + (t^7.265*y)/g1^10 + (2*t^7.359*y)/g1^6 + (2*t^7.453*y)/g1^2 + g1^2*t^7.547*y + 3*g1^6*t^7.641*y + (t^7.851*y)/g1^17 + (2*t^7.945*y)/g1^13 + (4*t^8.039*y)/g1^9 + (4*t^8.133*y)/g1^5 + (5*t^8.227*y)/g1 + 4*g1^3*t^8.32*y + 2*g1^7*t^8.414*y + g1^11*t^8.508*y - (t^8.531*y)/g1^20 - (t^8.625*y)/g1^16 + (t^8.812*y)/g1^8 + (3*t^8.906*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3065 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{7}$ 0.628 0.8172 0.7684 [M:[1.0, 1.0283, 0.9433, 1.2571, 0.6862, 0.7429, 0.7429], q:[0.2429, 0.7571], qb:[0.5, 0.5567], phi:[0.4858]] t^2.059 + 2*t^2.229 + t^2.399 + t^2.83 + t^2.915 + t^3. + t^3.085 + t^3.686 + t^3.856 + t^4.117 + 2*t^4.287 + 5*t^4.457 + 3*t^4.628 + 2*t^4.798 + t^4.889 + t^4.974 + 2*t^5.059 + 3*t^5.144 + 2*t^5.229 + 3*t^5.314 + t^5.399 + t^5.484 + t^5.66 + 2*t^5.745 + t^5.83 + 4*t^5.915 - 2*t^6. - t^4.457/y - t^4.457*y detail